插入单宁酸蚀刻 MOF 纳米晶体的 MXene 膜用于超快水渗透:阐明纳米约束层间通道中的水传输机制

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaowei Zhu, Fangjian Liu, Lijun Meng, Qieyuan Gao, Xi Wang, Mengmeng Lou, Xiangmin Xu, Wei Zhang, Fang Li, Bart Van der Bruggen
{"title":"插入单宁酸蚀刻 MOF 纳米晶体的 MXene 膜用于超快水渗透:阐明纳米约束层间通道中的水传输机制","authors":"Xiaowei Zhu, Fangjian Liu, Lijun Meng, Qieyuan Gao, Xi Wang, Mengmeng Lou, Xiangmin Xu, Wei Zhang, Fang Li, Bart Van der Bruggen","doi":"10.1021/acs.nanolett.4c05985","DOIUrl":null,"url":null,"abstract":"Utilizing pore and interlayer engineering within nanoconfined interlaminar channels represents an ingenious approach to design highly permselective MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>) membranes. Herein, the tannic acid (TA) etched ZIF-8 (TZIF-8) nanocrystals with hollow structures were effectually inserted into the interlayer spacing of MXene membranes. First, the density functional theory (DFT) results demonstrated the reaction mechanism between TA and ZIF-8. Then, the underlying mechanism of enhanced water-adsorptive properties for MXene/TZIF-8 membrane was due to the higher binding energy of water/TZIF-8 system than that of water/ZIF-8 system, elucidated by molecular dynamic simulation. Furthermore, the low mass transfer resistance and abundant mass transfer pathways of the MXene/TZIF-8 membrane were comprehensively proved by various experimental conclusions, characterizations and simulation calculations. As a result, the optimal MXene/TZIF-8 membrane exhibited high water permeance and concurrently satisfactory separation efficacy toward various oil/water emulsions. This work is anticipated to deepen the comprehension of high-efficiency water transport along interbedded nanochannels in MXene membranes.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"15 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MXene Membranes Inserted with Tannic Acid Etched MOF Nanocrystals for Ultrafast Water Permeation: Elucidating the Water Transport Mechanism in Nanoconfined Interlaminar Channels\",\"authors\":\"Xiaowei Zhu, Fangjian Liu, Lijun Meng, Qieyuan Gao, Xi Wang, Mengmeng Lou, Xiangmin Xu, Wei Zhang, Fang Li, Bart Van der Bruggen\",\"doi\":\"10.1021/acs.nanolett.4c05985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing pore and interlayer engineering within nanoconfined interlaminar channels represents an ingenious approach to design highly permselective MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>) membranes. Herein, the tannic acid (TA) etched ZIF-8 (TZIF-8) nanocrystals with hollow structures were effectually inserted into the interlayer spacing of MXene membranes. First, the density functional theory (DFT) results demonstrated the reaction mechanism between TA and ZIF-8. Then, the underlying mechanism of enhanced water-adsorptive properties for MXene/TZIF-8 membrane was due to the higher binding energy of water/TZIF-8 system than that of water/ZIF-8 system, elucidated by molecular dynamic simulation. Furthermore, the low mass transfer resistance and abundant mass transfer pathways of the MXene/TZIF-8 membrane were comprehensively proved by various experimental conclusions, characterizations and simulation calculations. As a result, the optimal MXene/TZIF-8 membrane exhibited high water permeance and concurrently satisfactory separation efficacy toward various oil/water emulsions. This work is anticipated to deepen the comprehension of high-efficiency water transport along interbedded nanochannels in MXene membranes.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05985\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05985","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用纳米限制层间通道内的孔隙和层间工程,是设计高永久选择性 MXene(Ti3C2TX)膜的一种巧妙方法。在这里,具有中空结构的单宁酸(TA)蚀刻 ZIF-8 (TZIF-8)纳米晶体被有效地插入到 MXene 膜的层间距中。首先,密度泛函理论(DFT)结果证明了 TA 与 ZIF-8 的反应机理。然后,通过分子动力学模拟阐明了 MXene/TZIF-8 膜吸水性能增强的内在机制是由于水/TZIF-8 系统的结合能高于水/ZIF-8 系统。此外,各种实验结论、表征和模拟计算全面证实了 MXene/TZIF-8 膜的低传质阻力和丰富的传质途径。结果表明,最佳的 MXene/TZIF-8 膜具有较高的透水性,同时对各种油/水乳液具有令人满意的分离效果。这项工作有望加深人们对 MXene 膜中沿着层间纳米通道的高效水传输的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MXene Membranes Inserted with Tannic Acid Etched MOF Nanocrystals for Ultrafast Water Permeation: Elucidating the Water Transport Mechanism in Nanoconfined Interlaminar Channels

MXene Membranes Inserted with Tannic Acid Etched MOF Nanocrystals for Ultrafast Water Permeation: Elucidating the Water Transport Mechanism in Nanoconfined Interlaminar Channels
Utilizing pore and interlayer engineering within nanoconfined interlaminar channels represents an ingenious approach to design highly permselective MXene (Ti3C2TX) membranes. Herein, the tannic acid (TA) etched ZIF-8 (TZIF-8) nanocrystals with hollow structures were effectually inserted into the interlayer spacing of MXene membranes. First, the density functional theory (DFT) results demonstrated the reaction mechanism between TA and ZIF-8. Then, the underlying mechanism of enhanced water-adsorptive properties for MXene/TZIF-8 membrane was due to the higher binding energy of water/TZIF-8 system than that of water/ZIF-8 system, elucidated by molecular dynamic simulation. Furthermore, the low mass transfer resistance and abundant mass transfer pathways of the MXene/TZIF-8 membrane were comprehensively proved by various experimental conclusions, characterizations and simulation calculations. As a result, the optimal MXene/TZIF-8 membrane exhibited high water permeance and concurrently satisfactory separation efficacy toward various oil/water emulsions. This work is anticipated to deepen the comprehension of high-efficiency water transport along interbedded nanochannels in MXene membranes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信