{"title":"最新NICER数据对中子星状态方程的意义","authors":"Len Brandes, Wolfram Weise","doi":"10.1103/physrevd.111.034005","DOIUrl":null,"url":null,"abstract":"As an update to our previously performed Bayesian inference analyses of the neutron star matter equation-of-state and related quantities, the additional impact of the recently published NICER data of PSR J0437-4751 is examined. Including the mass and radius distributions of this pulsar in our database results in modest shifts from previously inferred median posterior values of radii R</a:mi></a:math> and central densities <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>n</c:mi><c:mi>c</c:mi></c:msub></c:math> for representative <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mn>1.4</e:mn><e:msub><e:mi>M</e:mi><e:mo stretchy=\"false\">⊙</e:mo></e:msub></e:math> and <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mn>2.1</h:mn><h:msub><h:mi>M</h:mi><h:mo stretchy=\"false\">⊙</h:mo></h:msub></h:math> neutron stars: radii are reduced by about 0.2–0.3 km to values of <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>R</k:mi><k:mn>1.4</k:mn></k:msub><k:mo>=</k:mo><k:mn>12.1</k:mn><k:mo>±</k:mo><k:mn>0.5</k:mn><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>km</k:mi></k:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>R</m:mi><m:mn>2.1</m:mn></m:msub><m:mo>=</m:mo><m:msubsup><m:mn>11.9</m:mn><m:mrow><m:mo>−</m:mo><m:mn>0.6</m:mn></m:mrow><m:mrow><m:mo>+</m:mo><m:mn>0.5</m:mn></m:mrow></m:msubsup><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>km</m:mi></m:math> (at the 68% level), and central densities increase slightly to values of <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msub><o:mi>n</o:mi><o:mi>c</o:mi></o:msub><o:mo stretchy=\"false\">(</o:mo><o:mn>1.4</o:mn><o:msub><o:mi>M</o:mi><o:mo stretchy=\"false\">⊙</o:mo></o:msub><o:mo stretchy=\"false\">)</o:mo><o:mo>/</o:mo><o:msub><o:mi>n</o:mi><o:mn>0</o:mn></o:msub><o:mo>=</o:mo><o:mn>2.8</o:mn><o:mo>±</o:mo><o:mn>0.3</o:mn></o:math> and <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:msub><t:mi>n</t:mi><t:mi>c</t:mi></t:msub><t:mo stretchy=\"false\">(</t:mo><t:mn>2.1</t:mn><t:msub><t:mi>M</t:mi><t:mo stretchy=\"false\">⊙</t:mo></t:msub><t:mo stretchy=\"false\">)</t:mo><t:mo>/</t:mo><t:msub><t:mi>n</t:mi><t:mn>0</t:mn></t:msub><t:mo>=</t:mo><t:msubsup><t:mn>3.8</t:mn><t:mrow><t:mo>−</t:mo><t:mn>0.7</t:mn></t:mrow><t:mrow><t:mo>+</t:mo><t:mn>0.6</t:mn></t:mrow></t:msubsup></t:math> (in units of equilibrium nuclear matter density, <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:msub><y:mi>n</y:mi><y:mn>0</y:mn></y:msub><y:mo>=</y:mo><y:mn>0.16</y:mn><y:mtext> </y:mtext><y:mtext> </y:mtext><y:msup><y:mrow><y:mi>fm</y:mi></y:mrow><y:mrow><y:mo>−</y:mo><y:mn>3</y:mn></y:mrow></y:msup></y:math>)—i.e., they still fall below five times nuclear saturation density at the 68% level. As a further significant result, the evidence established by analyzing Bayes factors for a trace anomaly measure, Δ</ab:mi>=</ab:mo>1</ab:mn>/</ab:mo>3</ab:mn>−</ab:mo>P</ab:mi>/</ab:mo>ϵ</ab:mi><</ab:mo>0</ab:mn></ab:math>, inside heavy neutron stars is raised to . <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"136 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of latest NICER data for the neutron star equation of state\",\"authors\":\"Len Brandes, Wolfram Weise\",\"doi\":\"10.1103/physrevd.111.034005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an update to our previously performed Bayesian inference analyses of the neutron star matter equation-of-state and related quantities, the additional impact of the recently published NICER data of PSR J0437-4751 is examined. Including the mass and radius distributions of this pulsar in our database results in modest shifts from previously inferred median posterior values of radii R</a:mi></a:math> and central densities <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>n</c:mi><c:mi>c</c:mi></c:msub></c:math> for representative <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mn>1.4</e:mn><e:msub><e:mi>M</e:mi><e:mo stretchy=\\\"false\\\">⊙</e:mo></e:msub></e:math> and <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><h:mn>2.1</h:mn><h:msub><h:mi>M</h:mi><h:mo stretchy=\\\"false\\\">⊙</h:mo></h:msub></h:math> neutron stars: radii are reduced by about 0.2–0.3 km to values of <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msub><k:mi>R</k:mi><k:mn>1.4</k:mn></k:msub><k:mo>=</k:mo><k:mn>12.1</k:mn><k:mo>±</k:mo><k:mn>0.5</k:mn><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>km</k:mi></k:math> and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msub><m:mi>R</m:mi><m:mn>2.1</m:mn></m:msub><m:mo>=</m:mo><m:msubsup><m:mn>11.9</m:mn><m:mrow><m:mo>−</m:mo><m:mn>0.6</m:mn></m:mrow><m:mrow><m:mo>+</m:mo><m:mn>0.5</m:mn></m:mrow></m:msubsup><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>km</m:mi></m:math> (at the 68% level), and central densities increase slightly to values of <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:msub><o:mi>n</o:mi><o:mi>c</o:mi></o:msub><o:mo stretchy=\\\"false\\\">(</o:mo><o:mn>1.4</o:mn><o:msub><o:mi>M</o:mi><o:mo stretchy=\\\"false\\\">⊙</o:mo></o:msub><o:mo stretchy=\\\"false\\\">)</o:mo><o:mo>/</o:mo><o:msub><o:mi>n</o:mi><o:mn>0</o:mn></o:msub><o:mo>=</o:mo><o:mn>2.8</o:mn><o:mo>±</o:mo><o:mn>0.3</o:mn></o:math> and <t:math xmlns:t=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><t:msub><t:mi>n</t:mi><t:mi>c</t:mi></t:msub><t:mo stretchy=\\\"false\\\">(</t:mo><t:mn>2.1</t:mn><t:msub><t:mi>M</t:mi><t:mo stretchy=\\\"false\\\">⊙</t:mo></t:msub><t:mo stretchy=\\\"false\\\">)</t:mo><t:mo>/</t:mo><t:msub><t:mi>n</t:mi><t:mn>0</t:mn></t:msub><t:mo>=</t:mo><t:msubsup><t:mn>3.8</t:mn><t:mrow><t:mo>−</t:mo><t:mn>0.7</t:mn></t:mrow><t:mrow><t:mo>+</t:mo><t:mn>0.6</t:mn></t:mrow></t:msubsup></t:math> (in units of equilibrium nuclear matter density, <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:msub><y:mi>n</y:mi><y:mn>0</y:mn></y:msub><y:mo>=</y:mo><y:mn>0.16</y:mn><y:mtext> </y:mtext><y:mtext> </y:mtext><y:msup><y:mrow><y:mi>fm</y:mi></y:mrow><y:mrow><y:mo>−</y:mo><y:mn>3</y:mn></y:mrow></y:msup></y:math>)—i.e., they still fall below five times nuclear saturation density at the 68% level. As a further significant result, the evidence established by analyzing Bayes factors for a trace anomaly measure, Δ</ab:mi>=</ab:mo>1</ab:mn>/</ab:mo>3</ab:mn>−</ab:mo>P</ab:mi>/</ab:mo>ϵ</ab:mi><</ab:mo>0</ab:mn></ab:math>, inside heavy neutron stars is raised to . <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.034005\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.034005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Implications of latest NICER data for the neutron star equation of state
As an update to our previously performed Bayesian inference analyses of the neutron star matter equation-of-state and related quantities, the additional impact of the recently published NICER data of PSR J0437-4751 is examined. Including the mass and radius distributions of this pulsar in our database results in modest shifts from previously inferred median posterior values of radii R and central densities nc for representative 1.4M⊙ and 2.1M⊙ neutron stars: radii are reduced by about 0.2–0.3 km to values of R1.4=12.1±0.5km and R2.1=11.9−0.6+0.5km (at the 68% level), and central densities increase slightly to values of nc(1.4M⊙)/n0=2.8±0.3 and nc(2.1M⊙)/n0=3.8−0.7+0.6 (in units of equilibrium nuclear matter density, n0=0.16fm−3)—i.e., they still fall below five times nuclear saturation density at the 68% level. As a further significant result, the evidence established by analyzing Bayes factors for a trace anomaly measure, Δ=1/3−P/ϵ<0, inside heavy neutron stars is raised to . Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.