{"title":"通过解码表面肌电图的神经驱动信息实现在线和跨用户手指运动模式识别","authors":"Haowen Zhao, Yunfei Liu, Xinhui Li, Xiang Chen, Xu Zhang","doi":"10.1142/S0129065725500145","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-user variability is a well-known challenge that leads to severe performance degradation and impacts the robustness of practical myoelectric control systems. To address this issue, a novel method for myoelectric recognition of finger movement patterns is proposed by incorporating a neural decoding approach with unsupervised domain adaption (UDA) learning. In our method, the neural decoding approach is implemented by extracting microscopic features characterizing individual motor unit (MU) activities obtained from a two-stage online surface electromyogram (SEMG) decomposition. A specific deep learning model is designed and initially trained using labeled data from a set of existing users. The model can update adaptively when recognizing the movement patterns of a new user. The final movement pattern was determined by a fuzzy weighted decision strategy. SEMG signals were collected from the finger extensor muscles of 15 subjects to detect seven dexterous finger-movement patterns. The proposed method achieved a movement pattern recognition accuracy of ([Formula: see text])% over seven movements under cross-user testing scenarios, much higher than that of the conventional methods using global SEMG features. Our study presents a novel robust myoelectric pattern recognition approach at a fine-grained MU level, with wide applications in neural interface and prosthesis control.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550014"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online and Cross-User Finger Movement Pattern Recognition by Decoding Neural Drive Information from Surface Electromyogram.\",\"authors\":\"Haowen Zhao, Yunfei Liu, Xinhui Li, Xiang Chen, Xu Zhang\",\"doi\":\"10.1142/S0129065725500145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cross-user variability is a well-known challenge that leads to severe performance degradation and impacts the robustness of practical myoelectric control systems. To address this issue, a novel method for myoelectric recognition of finger movement patterns is proposed by incorporating a neural decoding approach with unsupervised domain adaption (UDA) learning. In our method, the neural decoding approach is implemented by extracting microscopic features characterizing individual motor unit (MU) activities obtained from a two-stage online surface electromyogram (SEMG) decomposition. A specific deep learning model is designed and initially trained using labeled data from a set of existing users. The model can update adaptively when recognizing the movement patterns of a new user. The final movement pattern was determined by a fuzzy weighted decision strategy. SEMG signals were collected from the finger extensor muscles of 15 subjects to detect seven dexterous finger-movement patterns. The proposed method achieved a movement pattern recognition accuracy of ([Formula: see text])% over seven movements under cross-user testing scenarios, much higher than that of the conventional methods using global SEMG features. Our study presents a novel robust myoelectric pattern recognition approach at a fine-grained MU level, with wide applications in neural interface and prosthesis control.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Online and Cross-User Finger Movement Pattern Recognition by Decoding Neural Drive Information from Surface Electromyogram.
Cross-user variability is a well-known challenge that leads to severe performance degradation and impacts the robustness of practical myoelectric control systems. To address this issue, a novel method for myoelectric recognition of finger movement patterns is proposed by incorporating a neural decoding approach with unsupervised domain adaption (UDA) learning. In our method, the neural decoding approach is implemented by extracting microscopic features characterizing individual motor unit (MU) activities obtained from a two-stage online surface electromyogram (SEMG) decomposition. A specific deep learning model is designed and initially trained using labeled data from a set of existing users. The model can update adaptively when recognizing the movement patterns of a new user. The final movement pattern was determined by a fuzzy weighted decision strategy. SEMG signals were collected from the finger extensor muscles of 15 subjects to detect seven dexterous finger-movement patterns. The proposed method achieved a movement pattern recognition accuracy of ([Formula: see text])% over seven movements under cross-user testing scenarios, much higher than that of the conventional methods using global SEMG features. Our study presents a novel robust myoelectric pattern recognition approach at a fine-grained MU level, with wide applications in neural interface and prosthesis control.