Jaepil Jo, Herve Hugonnet, Mahn Jae Lee, YongKeun Park
{"title":"数字细胞测量:从 Holotomography 提取正向和侧向散射信号。","authors":"Jaepil Jo, Herve Hugonnet, Mahn Jae Lee, YongKeun Park","doi":"10.1002/jbio.202400387","DOIUrl":null,"url":null,"abstract":"<p><p>Flow cytometry is a cornerstone technique in medical and biological research, providing crucial information about cell size and granularity through forward scatter (FSC) and side scatter (SSC) signals. Despite its widespread use, the precise relationship between these scatter signals and corresponding microscopic images remains underexplored. Here, we investigate this intrinsic relationship by utilizing scattering theory and holotomography, a three-dimensional quantitative phase imaging (QPI) technique. We demonstrate the extraction of FSC and SSC signals from individual, unlabeled cells by analyzing their three-dimensional refractive index distributions obtained through holotomography. Additionally, we introduce a method for digital windowing of SSC signals to facilitate effective segmentation and morphology-based cell type classification. Our approach bridges the gap between flow cytometry and microscopic imaging, offering a new perspective on analyzing cellular characteristics with high accuracy and without the need for labeling.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400387"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Cytometry: Extraction of Forward and Side Scattering Signals From Holotomography.\",\"authors\":\"Jaepil Jo, Herve Hugonnet, Mahn Jae Lee, YongKeun Park\",\"doi\":\"10.1002/jbio.202400387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flow cytometry is a cornerstone technique in medical and biological research, providing crucial information about cell size and granularity through forward scatter (FSC) and side scatter (SSC) signals. Despite its widespread use, the precise relationship between these scatter signals and corresponding microscopic images remains underexplored. Here, we investigate this intrinsic relationship by utilizing scattering theory and holotomography, a three-dimensional quantitative phase imaging (QPI) technique. We demonstrate the extraction of FSC and SSC signals from individual, unlabeled cells by analyzing their three-dimensional refractive index distributions obtained through holotomography. Additionally, we introduce a method for digital windowing of SSC signals to facilitate effective segmentation and morphology-based cell type classification. Our approach bridges the gap between flow cytometry and microscopic imaging, offering a new perspective on analyzing cellular characteristics with high accuracy and without the need for labeling.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202400387\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digital Cytometry: Extraction of Forward and Side Scattering Signals From Holotomography.
Flow cytometry is a cornerstone technique in medical and biological research, providing crucial information about cell size and granularity through forward scatter (FSC) and side scatter (SSC) signals. Despite its widespread use, the precise relationship between these scatter signals and corresponding microscopic images remains underexplored. Here, we investigate this intrinsic relationship by utilizing scattering theory and holotomography, a three-dimensional quantitative phase imaging (QPI) technique. We demonstrate the extraction of FSC and SSC signals from individual, unlabeled cells by analyzing their three-dimensional refractive index distributions obtained through holotomography. Additionally, we introduce a method for digital windowing of SSC signals to facilitate effective segmentation and morphology-based cell type classification. Our approach bridges the gap between flow cytometry and microscopic imaging, offering a new perspective on analyzing cellular characteristics with high accuracy and without the need for labeling.