脑皮质区神经血管耦合和静息状态下颈动脉硬化的网络连接。

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2025-01-01 Epub Date: 2025-02-04 DOI:10.1117/1.NPh.12.S1.S14606
Marleen E Bakker, Cong Zhang, Matthieu P Vanni, Frédéric Lesage
{"title":"脑皮质区神经血管耦合和静息状态下颈动脉硬化的网络连接。","authors":"Marleen E Bakker, Cong Zhang, Matthieu P Vanni, Frédéric Lesage","doi":"10.1117/1.NPh.12.S1.S14606","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Neurovascular coupling (NVC) is key to research as hemodynamics can reflect neuronal activation and is often used in studies regarding the resting state network (RSN). However, several circumstances, including diseases that reduce blood vessel elasticity, can diminish NVC. In these cases, hemodynamic proxies might not accurately reflect the neuronal RSN.</p><p><strong>Aim: </strong>We aim to investigate in resting state if (1) NVC differs over brain regions, (2) NVC remains intact with a mild rigidification of the carotid artery, (3) hemodynamic-based RSN reflects neuronal-based RSN, and (4) RSN differs with a mildly rigidified artery.</p><p><strong>Approach: </strong>We rigidified the right common carotid artery of mice ( <math><mrow><mi>n</mi> <mo>=</mo> <mn>15</mn></mrow> </math> ) by applying a <math> <mrow> <msub><mrow><mi>CaCl</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> -soaked cloth to it (NaCl for Sham, <math><mrow><mi>n</mi> <mo>=</mo> <mn>17</mn></mrow> </math> ). With simultaneous GCaMP and intrinsic optical imaging, we compared neuronal activation to hemodynamic changes over the entire cortex.</p><p><strong>Results: </strong>NVC parameters did not differ between the CaCl and Sham groups. Likewise, GCaMP and hemodynamic RSN showed similar connections in both groups. However, the parameters of NVC differed over brain regions. Retrosplenial regions had a slower response and a higher HbR peak than sensory and visual regions, and the motor cortex showed less HbO influx than sensory and visual regions.</p><p><strong>Conclusions: </strong>NVC in a resting state differs over brain regions but is not altered by mild rigidification of the carotid artery.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 Suppl 1","pages":"S14606"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792086/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neurovascular coupling over cortical brain areas and resting state network connectivity with and without rigidified carotid artery.\",\"authors\":\"Marleen E Bakker, Cong Zhang, Matthieu P Vanni, Frédéric Lesage\",\"doi\":\"10.1117/1.NPh.12.S1.S14606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Neurovascular coupling (NVC) is key to research as hemodynamics can reflect neuronal activation and is often used in studies regarding the resting state network (RSN). However, several circumstances, including diseases that reduce blood vessel elasticity, can diminish NVC. In these cases, hemodynamic proxies might not accurately reflect the neuronal RSN.</p><p><strong>Aim: </strong>We aim to investigate in resting state if (1) NVC differs over brain regions, (2) NVC remains intact with a mild rigidification of the carotid artery, (3) hemodynamic-based RSN reflects neuronal-based RSN, and (4) RSN differs with a mildly rigidified artery.</p><p><strong>Approach: </strong>We rigidified the right common carotid artery of mice ( <math><mrow><mi>n</mi> <mo>=</mo> <mn>15</mn></mrow> </math> ) by applying a <math> <mrow> <msub><mrow><mi>CaCl</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> -soaked cloth to it (NaCl for Sham, <math><mrow><mi>n</mi> <mo>=</mo> <mn>17</mn></mrow> </math> ). With simultaneous GCaMP and intrinsic optical imaging, we compared neuronal activation to hemodynamic changes over the entire cortex.</p><p><strong>Results: </strong>NVC parameters did not differ between the CaCl and Sham groups. Likewise, GCaMP and hemodynamic RSN showed similar connections in both groups. However, the parameters of NVC differed over brain regions. Retrosplenial regions had a slower response and a higher HbR peak than sensory and visual regions, and the motor cortex showed less HbO influx than sensory and visual regions.</p><p><strong>Conclusions: </strong>NVC in a resting state differs over brain regions but is not altered by mild rigidification of the carotid artery.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"12 Suppl 1\",\"pages\":\"S14606\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792086/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.12.S1.S14606\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.S1.S14606","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

意义:神经血管耦合(Neurovascular coupling, NVC)是研究的关键,血流动力学可以反映神经元的激活,常用于静息状态网络(resting state network, RSN)的研究。然而,一些情况,包括降低血管弹性的疾病,可以减少NVC。在这些病例中,血流动力学指标可能不能准确反映神经元RSN。目的:我们的目的是研究静息状态下(1)NVC在大脑区域的不同,(2)NVC在颈动脉轻度硬化时保持完整,(3)基于血流动力学的RSN反映了基于神经元的RSN, (4) RSN与轻度硬化的动脉不同。方法:用氯化钙浸透的布(假手术用氯化钠,n = 17)固定小鼠右颈总动脉(n = 15)。同时使用GCaMP和内在光学成像,我们比较了整个皮层的神经元激活和血流动力学变化。结果:CaCl组与Sham组NVC参数无明显差异。同样,GCaMP和血流动力学RSN在两组中显示相似的连接。然而,NVC的参数在不同的脑区存在差异。脾后区比感觉和视觉区反应更慢,HbR峰值更高,运动皮层的HbO流比感觉和视觉区少。结论:静息状态下的NVC在不同脑区有所不同,但不会因颈动脉轻度硬化而改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neurovascular coupling over cortical brain areas and resting state network connectivity with and without rigidified carotid artery.

Significance: Neurovascular coupling (NVC) is key to research as hemodynamics can reflect neuronal activation and is often used in studies regarding the resting state network (RSN). However, several circumstances, including diseases that reduce blood vessel elasticity, can diminish NVC. In these cases, hemodynamic proxies might not accurately reflect the neuronal RSN.

Aim: We aim to investigate in resting state if (1) NVC differs over brain regions, (2) NVC remains intact with a mild rigidification of the carotid artery, (3) hemodynamic-based RSN reflects neuronal-based RSN, and (4) RSN differs with a mildly rigidified artery.

Approach: We rigidified the right common carotid artery of mice ( n = 15 ) by applying a CaCl 2 -soaked cloth to it (NaCl for Sham, n = 17 ). With simultaneous GCaMP and intrinsic optical imaging, we compared neuronal activation to hemodynamic changes over the entire cortex.

Results: NVC parameters did not differ between the CaCl and Sham groups. Likewise, GCaMP and hemodynamic RSN showed similar connections in both groups. However, the parameters of NVC differed over brain regions. Retrosplenial regions had a slower response and a higher HbR peak than sensory and visual regions, and the motor cortex showed less HbO influx than sensory and visual regions.

Conclusions: NVC in a resting state differs over brain regions but is not altered by mild rigidification of the carotid artery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信