Wenxin Li, Ziyi Lin, Jiahui Liu, Jiarui Zhang, Yuxuan Li, Yian Liu, Xinru Yuan, Huimin Li and Heyun Shen
{"title":"铂(IV)原药作为一种强效纳米声纳增敏剂,可自我循环放大声动力化疗,同时逆转顺铂抗药性。","authors":"Wenxin Li, Ziyi Lin, Jiahui Liu, Jiarui Zhang, Yuxuan Li, Yian Liu, Xinru Yuan, Huimin Li and Heyun Shen","doi":"10.1039/D4TB02615B","DOIUrl":null,"url":null,"abstract":"<p >Although sonodynamic therapy (SDT) has shown promising advancements in combination with chemotherapy, it frequently necessitates the requirement of conventional sonosensitizers and chemotherapeutic agents, engendering intricate systems and potential drug resistance. Herein, we fabricated a potent Pt(<small>IV</small>)-poly(amino acid) coordination nanosonosensitizer (PHPt) with dual reversal of cisplatin resistance, producing abundant <small><sup>1</sup></small>O<small><sub>2</sub></small> and ˙OH upon ultrasound irradiation without the use of any external sonosensitizers. The Pt(<small>IV</small>) prodrug in PHPt efficiently reduced to cisplatin through SDT-induced ˙H and glutathione (GSH), inducing ˙OH accumulation and CDDP release, which further amplified the oxidative stress on SDT. Moreover, the high GSH depletion performance of PHPt and administration of aspirin effectively inhibited cisplatin detoxification and activation of the nuclear factor-kappa B pathway, respectively. This cooperative action between the Pt(<small>IV</small>) prodrug and SDT in the tumor microenvironment promoted self-cyclic amplification of sonodynamic-chemotherapy, achieving a significant tumor inhibition rate of 99.4%. Thus, this study offers novel perspectives on the sonosensitizer development and cisplatin application in SDT.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 9","pages":" 3186-3197"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pt(iv) prodrug as a potent nanosonosensitizer self-cyclically amplifies sonodynamic-chemotherapy with dually reversing cisplatin resistance†\",\"authors\":\"Wenxin Li, Ziyi Lin, Jiahui Liu, Jiarui Zhang, Yuxuan Li, Yian Liu, Xinru Yuan, Huimin Li and Heyun Shen\",\"doi\":\"10.1039/D4TB02615B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Although sonodynamic therapy (SDT) has shown promising advancements in combination with chemotherapy, it frequently necessitates the requirement of conventional sonosensitizers and chemotherapeutic agents, engendering intricate systems and potential drug resistance. Herein, we fabricated a potent Pt(<small>IV</small>)-poly(amino acid) coordination nanosonosensitizer (PHPt) with dual reversal of cisplatin resistance, producing abundant <small><sup>1</sup></small>O<small><sub>2</sub></small> and ˙OH upon ultrasound irradiation without the use of any external sonosensitizers. The Pt(<small>IV</small>) prodrug in PHPt efficiently reduced to cisplatin through SDT-induced ˙H and glutathione (GSH), inducing ˙OH accumulation and CDDP release, which further amplified the oxidative stress on SDT. Moreover, the high GSH depletion performance of PHPt and administration of aspirin effectively inhibited cisplatin detoxification and activation of the nuclear factor-kappa B pathway, respectively. This cooperative action between the Pt(<small>IV</small>) prodrug and SDT in the tumor microenvironment promoted self-cyclic amplification of sonodynamic-chemotherapy, achieving a significant tumor inhibition rate of 99.4%. Thus, this study offers novel perspectives on the sonosensitizer development and cisplatin application in SDT.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 9\",\"pages\":\" 3186-3197\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02615b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02615b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Pt(iv) prodrug as a potent nanosonosensitizer self-cyclically amplifies sonodynamic-chemotherapy with dually reversing cisplatin resistance†
Although sonodynamic therapy (SDT) has shown promising advancements in combination with chemotherapy, it frequently necessitates the requirement of conventional sonosensitizers and chemotherapeutic agents, engendering intricate systems and potential drug resistance. Herein, we fabricated a potent Pt(IV)-poly(amino acid) coordination nanosonosensitizer (PHPt) with dual reversal of cisplatin resistance, producing abundant 1O2 and ˙OH upon ultrasound irradiation without the use of any external sonosensitizers. The Pt(IV) prodrug in PHPt efficiently reduced to cisplatin through SDT-induced ˙H and glutathione (GSH), inducing ˙OH accumulation and CDDP release, which further amplified the oxidative stress on SDT. Moreover, the high GSH depletion performance of PHPt and administration of aspirin effectively inhibited cisplatin detoxification and activation of the nuclear factor-kappa B pathway, respectively. This cooperative action between the Pt(IV) prodrug and SDT in the tumor microenvironment promoted self-cyclic amplification of sonodynamic-chemotherapy, achieving a significant tumor inhibition rate of 99.4%. Thus, this study offers novel perspectives on the sonosensitizer development and cisplatin application in SDT.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices