Kalim Ullah, Aslam Hossain, Mingyue Cao, Liangyi Xue, Yajun Wang
{"title":"大黄鱼LPL基因靶miRNA的鉴定。","authors":"Kalim Ullah, Aslam Hossain, Mingyue Cao, Liangyi Xue, Yajun Wang","doi":"10.1038/s41598-024-82988-2","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNA (miRNA), a conservatively evolved single-stranded non-coding RNA, exerts pivotal control over the appearance of target genes and several biological processes. This study conducted a comprehensive screening of candidate microRNAs (miRNAs) associated with Lipoprotein Lipase (LPL) in the large yellow croaker (Larimichthys crocea), utilizing sophisticated bioinformatics techniques across the species' muscular and hepatic tissues. The bioinformatics analysis facilitated the compilation and examination of miRNA datasets specific to these tissues. The investigation culminated in the identification of miR-84a and miR-1231-5p as key miRNAs that modulate fat hydrolysis, highlighting their potential roles in lipid metabolism. Subsequent in-depth analysis further implicated these miRNAs, along with miR-891a, as prospective targets of LPL, suggesting their integral involvement in the regulation of this critical enzyme. Validation of these bioinformatics predictions was conducted through the construction of double luciferase reporters concealing the LPL 3' untranslated region (3'UTR), substantiating that miR-84a and miR-1231-5p can modulate LPL expression via the LPL 3'UTR. Conversely, miR-891a was not concerned with this regulatory mechanism. Site-directed mutagenesis experiments elucidated the specificity of the interaction sequences. Quantitative PCR assays suggested that miR-84a and miR-1231-5p might influence LPL expression during the starvation phase, intimating the regulatory role of miRNA in fatty acid metabolism within hepatic and muscular tissue under starvation. These findings offer a nuanced understanding of LPL's molecular functionality under stress conditions in fish, emphasizing the regulatory dynamics of miRNA during metabolic stress.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4164"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794633/pdf/","citationCount":"0","resultStr":"{\"title\":\"Target miRNA identification for the LPL gene in large yellow croaker (Larimichthys crocea).\",\"authors\":\"Kalim Ullah, Aslam Hossain, Mingyue Cao, Liangyi Xue, Yajun Wang\",\"doi\":\"10.1038/s41598-024-82988-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNA (miRNA), a conservatively evolved single-stranded non-coding RNA, exerts pivotal control over the appearance of target genes and several biological processes. This study conducted a comprehensive screening of candidate microRNAs (miRNAs) associated with Lipoprotein Lipase (LPL) in the large yellow croaker (Larimichthys crocea), utilizing sophisticated bioinformatics techniques across the species' muscular and hepatic tissues. The bioinformatics analysis facilitated the compilation and examination of miRNA datasets specific to these tissues. The investigation culminated in the identification of miR-84a and miR-1231-5p as key miRNAs that modulate fat hydrolysis, highlighting their potential roles in lipid metabolism. Subsequent in-depth analysis further implicated these miRNAs, along with miR-891a, as prospective targets of LPL, suggesting their integral involvement in the regulation of this critical enzyme. Validation of these bioinformatics predictions was conducted through the construction of double luciferase reporters concealing the LPL 3' untranslated region (3'UTR), substantiating that miR-84a and miR-1231-5p can modulate LPL expression via the LPL 3'UTR. Conversely, miR-891a was not concerned with this regulatory mechanism. Site-directed mutagenesis experiments elucidated the specificity of the interaction sequences. Quantitative PCR assays suggested that miR-84a and miR-1231-5p might influence LPL expression during the starvation phase, intimating the regulatory role of miRNA in fatty acid metabolism within hepatic and muscular tissue under starvation. These findings offer a nuanced understanding of LPL's molecular functionality under stress conditions in fish, emphasizing the regulatory dynamics of miRNA during metabolic stress.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4164\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794633/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82988-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82988-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Target miRNA identification for the LPL gene in large yellow croaker (Larimichthys crocea).
MicroRNA (miRNA), a conservatively evolved single-stranded non-coding RNA, exerts pivotal control over the appearance of target genes and several biological processes. This study conducted a comprehensive screening of candidate microRNAs (miRNAs) associated with Lipoprotein Lipase (LPL) in the large yellow croaker (Larimichthys crocea), utilizing sophisticated bioinformatics techniques across the species' muscular and hepatic tissues. The bioinformatics analysis facilitated the compilation and examination of miRNA datasets specific to these tissues. The investigation culminated in the identification of miR-84a and miR-1231-5p as key miRNAs that modulate fat hydrolysis, highlighting their potential roles in lipid metabolism. Subsequent in-depth analysis further implicated these miRNAs, along with miR-891a, as prospective targets of LPL, suggesting their integral involvement in the regulation of this critical enzyme. Validation of these bioinformatics predictions was conducted through the construction of double luciferase reporters concealing the LPL 3' untranslated region (3'UTR), substantiating that miR-84a and miR-1231-5p can modulate LPL expression via the LPL 3'UTR. Conversely, miR-891a was not concerned with this regulatory mechanism. Site-directed mutagenesis experiments elucidated the specificity of the interaction sequences. Quantitative PCR assays suggested that miR-84a and miR-1231-5p might influence LPL expression during the starvation phase, intimating the regulatory role of miRNA in fatty acid metabolism within hepatic and muscular tissue under starvation. These findings offer a nuanced understanding of LPL's molecular functionality under stress conditions in fish, emphasizing the regulatory dynamics of miRNA during metabolic stress.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.