利用可解释卷积神经网络进行计算机辅助胆石症诊断。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dheeraj Kumar, Mayuri A Mehta, Ketan Kotecha, Ambarish Kulkarni
{"title":"利用可解释卷积神经网络进行计算机辅助胆石症诊断。","authors":"Dheeraj Kumar, Mayuri A Mehta, Ketan Kotecha, Ambarish Kulkarni","doi":"10.1038/s41598-025-85798-2","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and precise identification of cholelithiasis is essential for saving the lives of millions of people worldwide. Although several computer-aided cholelithiasis diagnosis approaches have been introduced in the literature, their use is limited because Convolutional Neural Network (CNN) models are black box in nature. Therefore, a novel approach for cholelithiasis classification using custom CNN with post-hoc model explanation is proposed. This paper presents multiple contributions. First, a custom CNN architecture is proposed to classify and predict cholelithiasis from ultrasound image. Second, a modified deep convolutional generative adversarial network is proposed to produce synthetic ultrasound images for better model generalization. Third, a hybrid visual explanation method is proposed by combining gradient-weighted class activation with local interpretable model agnostic explanation to generate a visual explanation using a heatmap. Fourth, an exhaustive performance analysis of the proposed approach on ultrasound images collected from three different Indian hospitals is presented to showcase its efficacy for computer-aided cholelithiasis diagnosis. Fifth, a team of radiologists evaluates and validates the prediction and respective visual explanations made using the proposed approach. The results reveal that the proposed cholelithiasis classification approach beats the performance of state-of-the-art pre-trained CNN and Vision Transformer models. The heatmap generated through the proposed hybrid explanation method offers detailed visual explanations to enhance transparency and trustworthiness in the medical domain.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4249"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794719/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computer-aided cholelithiasis diagnosis using explainable convolutional neural network.\",\"authors\":\"Dheeraj Kumar, Mayuri A Mehta, Ketan Kotecha, Ambarish Kulkarni\",\"doi\":\"10.1038/s41598-025-85798-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate and precise identification of cholelithiasis is essential for saving the lives of millions of people worldwide. Although several computer-aided cholelithiasis diagnosis approaches have been introduced in the literature, their use is limited because Convolutional Neural Network (CNN) models are black box in nature. Therefore, a novel approach for cholelithiasis classification using custom CNN with post-hoc model explanation is proposed. This paper presents multiple contributions. First, a custom CNN architecture is proposed to classify and predict cholelithiasis from ultrasound image. Second, a modified deep convolutional generative adversarial network is proposed to produce synthetic ultrasound images for better model generalization. Third, a hybrid visual explanation method is proposed by combining gradient-weighted class activation with local interpretable model agnostic explanation to generate a visual explanation using a heatmap. Fourth, an exhaustive performance analysis of the proposed approach on ultrasound images collected from three different Indian hospitals is presented to showcase its efficacy for computer-aided cholelithiasis diagnosis. Fifth, a team of radiologists evaluates and validates the prediction and respective visual explanations made using the proposed approach. The results reveal that the proposed cholelithiasis classification approach beats the performance of state-of-the-art pre-trained CNN and Vision Transformer models. The heatmap generated through the proposed hybrid explanation method offers detailed visual explanations to enhance transparency and trustworthiness in the medical domain.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4249\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794719/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85798-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85798-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

准确和精确地识别胆石症对于挽救全世界数百万人的生命至关重要。虽然文献中已经介绍了几种计算机辅助胆石症诊断方法,但由于卷积神经网络(CNN)模型本质上是黑匣子,它们的使用受到限制。因此,提出了一种使用自定义CNN和事后模型解释进行胆石症分类的新方法。本文提出了多个贡献。首先,提出了一种自定义CNN架构,对超声图像中的胆石症进行分类和预测。其次,提出了一种改进的深度卷积生成对抗网络来生成合成超声图像,以获得更好的模型泛化。第三,提出了一种混合视觉解释方法,将梯度加权类激活与局部可解释模型不可知的解释相结合,利用热图生成视觉解释。第四,对从三家不同的印度医院收集的超声图像进行了详尽的性能分析,以展示其对计算机辅助胆石症诊断的功效。第五,一组放射科医生评估和验证使用建议的方法做出的预测和各自的视觉解释。结果表明,所提出的胆石症分类方法优于最先进的预训练CNN和Vision Transformer模型。通过提出的混合解释方法生成的热图提供了详细的可视化解释,以提高医疗领域的透明度和可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer-aided cholelithiasis diagnosis using explainable convolutional neural network.

Accurate and precise identification of cholelithiasis is essential for saving the lives of millions of people worldwide. Although several computer-aided cholelithiasis diagnosis approaches have been introduced in the literature, their use is limited because Convolutional Neural Network (CNN) models are black box in nature. Therefore, a novel approach for cholelithiasis classification using custom CNN with post-hoc model explanation is proposed. This paper presents multiple contributions. First, a custom CNN architecture is proposed to classify and predict cholelithiasis from ultrasound image. Second, a modified deep convolutional generative adversarial network is proposed to produce synthetic ultrasound images for better model generalization. Third, a hybrid visual explanation method is proposed by combining gradient-weighted class activation with local interpretable model agnostic explanation to generate a visual explanation using a heatmap. Fourth, an exhaustive performance analysis of the proposed approach on ultrasound images collected from three different Indian hospitals is presented to showcase its efficacy for computer-aided cholelithiasis diagnosis. Fifth, a team of radiologists evaluates and validates the prediction and respective visual explanations made using the proposed approach. The results reveal that the proposed cholelithiasis classification approach beats the performance of state-of-the-art pre-trained CNN and Vision Transformer models. The heatmap generated through the proposed hybrid explanation method offers detailed visual explanations to enhance transparency and trustworthiness in the medical domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信