Ali Safdari, Chanda Sai Keshav, Deepanshu Mody, Kshitij Verma, Utsav Kaushal, Vaadeendra Kumar Burra, Sibnath Ray, Debashree Bandyopadhyay
{"title":"基于机器学习的COVID-19血液学参数预测评分的外部有效性:一项使用巴西、意大利和西欧医院记录的研究。","authors":"Ali Safdari, Chanda Sai Keshav, Deepanshu Mody, Kshitij Verma, Utsav Kaushal, Vaadeendra Kumar Burra, Sibnath Ray, Debashree Bandyopadhyay","doi":"10.1371/journal.pone.0316467","DOIUrl":null,"url":null,"abstract":"<p><p>The unprecedented worldwide pandemic caused by COVID-19 has motivated several research groups to develop machine-learning based approaches that aim to automate the diagnosis or screening of COVID-19, in large-scale. The gold standard for COVID-19 detection, quantitative-Real-Time-Polymerase-Chain-Reaction (qRT-PCR), is expensive and time-consuming. Alternatively, haematology-based detections were fast and near-accurate, although those were less explored. The external-validity of the haematology-based COVID-19-predictions on diverse populations are yet to be fully investigated. Here we report external-validity of machine learning-based prediction scores from haematological parameters recorded in different hospitals of Brazil, Italy, and Western Europe (raw sample size, 195554). The XGBoost classifier performed consistently better (out of seven ML classifiers) on all the datasets. The working models include a set of either four or fourteen haematological parameters. The internal performances of the XGBoost models (AUC scores range from 84% to 97%) were superior to ML models reported in the literature for some of these datasets (AUC scores range from 84% to 87%). The meta-validation on the external performances revealed the reliability of the performance (AUC score 86%) along with good accuracy of the probabilistic prediction (Brier score 14%), particularly when the model was trained and tested on fourteen haematological parameters from the same country (Brazil). The external performance was reduced when the model was trained on datasets from Italy and tested on Brazil (AUC score 69%) and Western Europe (AUC score 65%); presumably affected by factors, like, ethnicity, phenotype, immunity, reference ranges, across the populations. The state-of-the-art in the present study is the development of a COVID-19 prediction tool that is reliable and parsimonious, using a fewer number of hematological features, in comparison to the earlier study with meta-validation, based on sufficient sample size (n = 195554). Thus, current models can be applied at other demographic locations, preferably, with prior training of the model on the same population. Availability: https://covipred.bits-hyderabad.ac.in/home; https://github.com/debashreebanerjee/CoviPred.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0316467"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793750/pdf/","citationCount":"0","resultStr":"{\"title\":\"The external validity of machine learning-based prediction scores from hematological parameters of COVID-19: A study using hospital records from Brazil, Italy, and Western Europe.\",\"authors\":\"Ali Safdari, Chanda Sai Keshav, Deepanshu Mody, Kshitij Verma, Utsav Kaushal, Vaadeendra Kumar Burra, Sibnath Ray, Debashree Bandyopadhyay\",\"doi\":\"10.1371/journal.pone.0316467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The unprecedented worldwide pandemic caused by COVID-19 has motivated several research groups to develop machine-learning based approaches that aim to automate the diagnosis or screening of COVID-19, in large-scale. The gold standard for COVID-19 detection, quantitative-Real-Time-Polymerase-Chain-Reaction (qRT-PCR), is expensive and time-consuming. Alternatively, haematology-based detections were fast and near-accurate, although those were less explored. The external-validity of the haematology-based COVID-19-predictions on diverse populations are yet to be fully investigated. Here we report external-validity of machine learning-based prediction scores from haematological parameters recorded in different hospitals of Brazil, Italy, and Western Europe (raw sample size, 195554). The XGBoost classifier performed consistently better (out of seven ML classifiers) on all the datasets. The working models include a set of either four or fourteen haematological parameters. The internal performances of the XGBoost models (AUC scores range from 84% to 97%) were superior to ML models reported in the literature for some of these datasets (AUC scores range from 84% to 87%). The meta-validation on the external performances revealed the reliability of the performance (AUC score 86%) along with good accuracy of the probabilistic prediction (Brier score 14%), particularly when the model was trained and tested on fourteen haematological parameters from the same country (Brazil). The external performance was reduced when the model was trained on datasets from Italy and tested on Brazil (AUC score 69%) and Western Europe (AUC score 65%); presumably affected by factors, like, ethnicity, phenotype, immunity, reference ranges, across the populations. The state-of-the-art in the present study is the development of a COVID-19 prediction tool that is reliable and parsimonious, using a fewer number of hematological features, in comparison to the earlier study with meta-validation, based on sufficient sample size (n = 195554). Thus, current models can be applied at other demographic locations, preferably, with prior training of the model on the same population. Availability: https://covipred.bits-hyderabad.ac.in/home; https://github.com/debashreebanerjee/CoviPred.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 2\",\"pages\":\"e0316467\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793750/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0316467\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0316467","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The external validity of machine learning-based prediction scores from hematological parameters of COVID-19: A study using hospital records from Brazil, Italy, and Western Europe.
The unprecedented worldwide pandemic caused by COVID-19 has motivated several research groups to develop machine-learning based approaches that aim to automate the diagnosis or screening of COVID-19, in large-scale. The gold standard for COVID-19 detection, quantitative-Real-Time-Polymerase-Chain-Reaction (qRT-PCR), is expensive and time-consuming. Alternatively, haematology-based detections were fast and near-accurate, although those were less explored. The external-validity of the haematology-based COVID-19-predictions on diverse populations are yet to be fully investigated. Here we report external-validity of machine learning-based prediction scores from haematological parameters recorded in different hospitals of Brazil, Italy, and Western Europe (raw sample size, 195554). The XGBoost classifier performed consistently better (out of seven ML classifiers) on all the datasets. The working models include a set of either four or fourteen haematological parameters. The internal performances of the XGBoost models (AUC scores range from 84% to 97%) were superior to ML models reported in the literature for some of these datasets (AUC scores range from 84% to 87%). The meta-validation on the external performances revealed the reliability of the performance (AUC score 86%) along with good accuracy of the probabilistic prediction (Brier score 14%), particularly when the model was trained and tested on fourteen haematological parameters from the same country (Brazil). The external performance was reduced when the model was trained on datasets from Italy and tested on Brazil (AUC score 69%) and Western Europe (AUC score 65%); presumably affected by factors, like, ethnicity, phenotype, immunity, reference ranges, across the populations. The state-of-the-art in the present study is the development of a COVID-19 prediction tool that is reliable and parsimonious, using a fewer number of hematological features, in comparison to the earlier study with meta-validation, based on sufficient sample size (n = 195554). Thus, current models can be applied at other demographic locations, preferably, with prior training of the model on the same population. Availability: https://covipred.bits-hyderabad.ac.in/home; https://github.com/debashreebanerjee/CoviPred.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage