{"title":"RBT-1, a \"preconditioning\" agent, mitigates syndecan-1 shedding in patients undergoing \"on pump\" cardiac surgery and following experimental AKI.","authors":"Ali C M Johnson, Richard A Zager","doi":"10.14814/phy2.70218","DOIUrl":null,"url":null,"abstract":"<p><p>During systemic stress, syndecan-1 (SDC-1) shedding into plasma results, implying endothelial damage. RBT-1, a \"preconditioning\" agent, has been shown to mitigate postoperative complications following cardiac surgeries. This study assessed whether RBT-1 preconditioning attenuated SDC-1 shedding in these patients, implying a vascular protective effect. Patients (n, 112) were randomized to receive low-dose RBT-1, high-dose RBT-1, or placebo 24-48 h prior to surgery. Plasma samples were obtained before and 2 days postsurgery and assayed for SDC-1 (ELISA). To gain further insights, male CD-1 mice were subjected to acute renal injuries, and RBT-1's impact on plasma SDC-1 increases, vascular/aortic stress responses (NGAL/KIM-1/IL-6 gene induction), and two vascular cytoprotective pathways (Nrf2; ferritin) were assessed. Baseline plasma SDC-1 levels did not differ between patient groups. The placebo group developed an approximate 50% plasma SDC-1 (ng/mL) increase (p, 0.012). Conversely, no significant SDC-1 increases were seen in the RBT-1 treatment groups. Experimental injury markedly increased plasma SDC-1 concentrations, and these were significantly blunted by RBT-1 preconditioning. RBT-1 also mitigated AKI-induced aortic NGAL/KIM-1/IL-6 mRNA increases, activated aortic Nrf2, and increased vascular ferritin levels. RBT-1 preconditioning diminishes SDC-1 release and upregulates vascular ferritin and Nrf2. Hence, RBT-1 preconditioning can confer select vasoprotective effects.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 3","pages":"e70218"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
RBT-1, a "preconditioning" agent, mitigates syndecan-1 shedding in patients undergoing "on pump" cardiac surgery and following experimental AKI.
During systemic stress, syndecan-1 (SDC-1) shedding into plasma results, implying endothelial damage. RBT-1, a "preconditioning" agent, has been shown to mitigate postoperative complications following cardiac surgeries. This study assessed whether RBT-1 preconditioning attenuated SDC-1 shedding in these patients, implying a vascular protective effect. Patients (n, 112) were randomized to receive low-dose RBT-1, high-dose RBT-1, or placebo 24-48 h prior to surgery. Plasma samples were obtained before and 2 days postsurgery and assayed for SDC-1 (ELISA). To gain further insights, male CD-1 mice were subjected to acute renal injuries, and RBT-1's impact on plasma SDC-1 increases, vascular/aortic stress responses (NGAL/KIM-1/IL-6 gene induction), and two vascular cytoprotective pathways (Nrf2; ferritin) were assessed. Baseline plasma SDC-1 levels did not differ between patient groups. The placebo group developed an approximate 50% plasma SDC-1 (ng/mL) increase (p, 0.012). Conversely, no significant SDC-1 increases were seen in the RBT-1 treatment groups. Experimental injury markedly increased plasma SDC-1 concentrations, and these were significantly blunted by RBT-1 preconditioning. RBT-1 also mitigated AKI-induced aortic NGAL/KIM-1/IL-6 mRNA increases, activated aortic Nrf2, and increased vascular ferritin levels. RBT-1 preconditioning diminishes SDC-1 release and upregulates vascular ferritin and Nrf2. Hence, RBT-1 preconditioning can confer select vasoprotective effects.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.