在多体二阶布里渊-维格纳微扰理论中重新划分哈密顿量:揭示新的尺寸一致模型。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Linus Bjarne Dittmer, Martin Head-Gordon
{"title":"在多体二阶布里渊-维格纳微扰理论中重新划分哈密顿量:揭示新的尺寸一致模型。","authors":"Linus Bjarne Dittmer, Martin Head-Gordon","doi":"10.1063/5.0242211","DOIUrl":null,"url":null,"abstract":"<p><p>Second-order Møller-Plesset perturbation theory is well-known as a computationally inexpensive approach to the electron correlation problem that is size-consistent with a size-consistent reference but fails to be regular. On the other hand, the less well-known many-body version of Brillouin-Wigner perturbation theory has the reverse properties: it is regular but fails to be size-consistent when used with the standard MP partitioning. Consequently, its widespread use remains limited. In this work, we analyze the ways in which it is possible to use alternative non-MP partitions of the Hamiltonian to yield variants of BW2 that are size-consistent as well as regular. We show that there is a vast space of such BW2 theories and also show that it is possible to define a repartitioned BW2 theory from the ground state density alone, which regenerates the exact correlation energy. We also provide a general recipe for deriving regular, size-consistent, and size-extensive partitions from physically meaningful components, and we apply the result to small model systems. The scope of these results appears to further set the stage for a revival of BW2 in quantum chemistry.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repartitioning the Hamiltonian in many-body second-order Brillouin-Wigner perturbation theory: Uncovering new size-consistent models.\",\"authors\":\"Linus Bjarne Dittmer, Martin Head-Gordon\",\"doi\":\"10.1063/5.0242211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Second-order Møller-Plesset perturbation theory is well-known as a computationally inexpensive approach to the electron correlation problem that is size-consistent with a size-consistent reference but fails to be regular. On the other hand, the less well-known many-body version of Brillouin-Wigner perturbation theory has the reverse properties: it is regular but fails to be size-consistent when used with the standard MP partitioning. Consequently, its widespread use remains limited. In this work, we analyze the ways in which it is possible to use alternative non-MP partitions of the Hamiltonian to yield variants of BW2 that are size-consistent as well as regular. We show that there is a vast space of such BW2 theories and also show that it is possible to define a repartitioned BW2 theory from the ground state density alone, which regenerates the exact correlation energy. We also provide a general recipe for deriving regular, size-consistent, and size-extensive partitions from physically meaningful components, and we apply the result to small model systems. The scope of these results appears to further set the stage for a revival of BW2 in quantum chemistry.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 5\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0242211\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0242211","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二阶Møller-Plesset微扰理论是一种众所周知的计算成本低廉的方法,用于解决电子相关问题,该问题与尺寸一致的参考尺寸一致,但不具有规则性。另一方面,不太为人所知的布里渊-维格纳微扰理论的多体版本具有相反的性质:它是规则的,但在与标准MP划分使用时不能保持大小一致。因此,它的广泛使用仍然有限。在这项工作中,我们分析了可能使用哈密顿量的替代非mp分区来产生大小一致和规则的BW2变体的方法。我们证明了这样的BW2理论有很大的发展空间,也证明了仅从基态密度就可以定义一个重新划分的BW2理论,它可以再生精确的相关能。我们还提供了从物理上有意义的组件中导出规则的、大小一致的和大小扩展的分区的通用方法,并将结果应用于小型模型系统。这些结果的范围似乎进一步为量子化学中BW2的复兴奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Repartitioning the Hamiltonian in many-body second-order Brillouin-Wigner perturbation theory: Uncovering new size-consistent models.

Second-order Møller-Plesset perturbation theory is well-known as a computationally inexpensive approach to the electron correlation problem that is size-consistent with a size-consistent reference but fails to be regular. On the other hand, the less well-known many-body version of Brillouin-Wigner perturbation theory has the reverse properties: it is regular but fails to be size-consistent when used with the standard MP partitioning. Consequently, its widespread use remains limited. In this work, we analyze the ways in which it is possible to use alternative non-MP partitions of the Hamiltonian to yield variants of BW2 that are size-consistent as well as regular. We show that there is a vast space of such BW2 theories and also show that it is possible to define a repartitioned BW2 theory from the ground state density alone, which regenerates the exact correlation energy. We also provide a general recipe for deriving regular, size-consistent, and size-extensive partitions from physically meaningful components, and we apply the result to small model systems. The scope of these results appears to further set the stage for a revival of BW2 in quantum chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信