Yan-Hui Liu, Ya-Nan Yin, Ling-Ling Yu, Meng-He Chang, Qian Han
{"title":"miR-11903a 可调节 CLIPB9 介导的埃及伊蚊病原体防御和寿命。","authors":"Yan-Hui Liu, Ya-Nan Yin, Ling-Ling Yu, Meng-He Chang, Qian Han","doi":"10.1111/1744-7917.13512","DOIUrl":null,"url":null,"abstract":"<p><p>Arthropod melanization is a crucial defense mechanism mediated by a complex cascade of CLIP domain serine proteases (CLIPs). In this study, it was confirmed that microRNA-11903a (miR-11903a) targets Aedes-CLIPB9 (AeCLIPB9) by bioinformatics prediction and dual-luciferase reporter assays. Following intrathoracic injection of miR-11903a agomir and antagomir, Real-time quantitative polymerase chain reaction confirmed that AeCLIPB9 is negatively regulated by miR-11903a. Spatiotemporal expression analysis revealed that miR-11903a is most abundant in 4th instar larvae, followed by pupae and adults, and highly expressed in the wings, head, and midgut of female adults. Following pathogen infection, AeCLIPB9 and miR-11903a exhibited opposite expression trends, indicating their potential roles in mosquito innate immunity. To further investigate the relationship between AeCLIPB9 and miR-11903a, double-strand CLIPB9 was synthesized and RNA interference was performed. Seven-d survival assays revealed that both AeCLIPB9 and miR-11903a were crucial immune factors in fighting pathogens. Finally, longevity assays demonstrated that miR-11903a influenced mosquito lifespan.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-11903a modulates CLIPB9-mediated pathogen defense and longevity in Aedes aegypti.\",\"authors\":\"Yan-Hui Liu, Ya-Nan Yin, Ling-Ling Yu, Meng-He Chang, Qian Han\",\"doi\":\"10.1111/1744-7917.13512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arthropod melanization is a crucial defense mechanism mediated by a complex cascade of CLIP domain serine proteases (CLIPs). In this study, it was confirmed that microRNA-11903a (miR-11903a) targets Aedes-CLIPB9 (AeCLIPB9) by bioinformatics prediction and dual-luciferase reporter assays. Following intrathoracic injection of miR-11903a agomir and antagomir, Real-time quantitative polymerase chain reaction confirmed that AeCLIPB9 is negatively regulated by miR-11903a. Spatiotemporal expression analysis revealed that miR-11903a is most abundant in 4th instar larvae, followed by pupae and adults, and highly expressed in the wings, head, and midgut of female adults. Following pathogen infection, AeCLIPB9 and miR-11903a exhibited opposite expression trends, indicating their potential roles in mosquito innate immunity. To further investigate the relationship between AeCLIPB9 and miR-11903a, double-strand CLIPB9 was synthesized and RNA interference was performed. Seven-d survival assays revealed that both AeCLIPB9 and miR-11903a were crucial immune factors in fighting pathogens. Finally, longevity assays demonstrated that miR-11903a influenced mosquito lifespan.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13512\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13512","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
miR-11903a modulates CLIPB9-mediated pathogen defense and longevity in Aedes aegypti.
Arthropod melanization is a crucial defense mechanism mediated by a complex cascade of CLIP domain serine proteases (CLIPs). In this study, it was confirmed that microRNA-11903a (miR-11903a) targets Aedes-CLIPB9 (AeCLIPB9) by bioinformatics prediction and dual-luciferase reporter assays. Following intrathoracic injection of miR-11903a agomir and antagomir, Real-time quantitative polymerase chain reaction confirmed that AeCLIPB9 is negatively regulated by miR-11903a. Spatiotemporal expression analysis revealed that miR-11903a is most abundant in 4th instar larvae, followed by pupae and adults, and highly expressed in the wings, head, and midgut of female adults. Following pathogen infection, AeCLIPB9 and miR-11903a exhibited opposite expression trends, indicating their potential roles in mosquito innate immunity. To further investigate the relationship between AeCLIPB9 and miR-11903a, double-strand CLIPB9 was synthesized and RNA interference was performed. Seven-d survival assays revealed that both AeCLIPB9 and miR-11903a were crucial immune factors in fighting pathogens. Finally, longevity assays demonstrated that miR-11903a influenced mosquito lifespan.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.