通过dna小体- sirna对TSC22D4 mRNA的纳米分子沉默增强肝细胞的胰岛素敏化。

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Ameneh Mohammadi, Pedram Ebrahimnejad, Said Abediankenari, Zahra Kashi, Pooria Gill
{"title":"通过dna小体- sirna对TSC22D4 mRNA的纳米分子沉默增强肝细胞的胰岛素敏化。","authors":"Ameneh Mohammadi, Pedram Ebrahimnejad, Said Abediankenari, Zahra Kashi, Pooria Gill","doi":"10.22038/ijbms.2024.81998.17744","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Insulin resistance (IR) is a critical component of metabolic syndrome, primarily linked to obesity. It contributes to impaired glucose metabolism, beta-cell dysfunction, and the onset of type 2 diabetes. This study aimed to develop a DNAsome nanocarrier designed for the targeted delivery of small interfering RNA (siRNA) to inhibit mRNA of Transforming growth factor beta-like Stimulated Clone 22 D4 (TSC22D4), thereby enhancing insulin sensitivity in hepatocytes.</p><p><strong>Materials and methods: </strong>The DNAsome was constructed using Y-DNA building blocks derived from three distinct DNA oligonucleotides. Its structural characteristics were analyzed through atomic force microscopy (AFM). The functional efficacy of the DNAsome in delivering siRNA was evaluated by measuring its cellular uptake and ability to down-regulate TSC22D4 expression in HepG2 cells via real-time PCR. Additionally, the cytotoxicity and safety of both the DNAsome and the DNAsome-siRNA complexes were assessed using the MTT assay on HepG2 cells.</p><p><strong>Results: </strong>Findings indicated successful fabrication of the DNAsome nanocarriers, although aggregation was observed at higher concentrations, yielding nanoparticle sizes between 116 and 740 nm. Real-time PCR results confirmed effective siRNA targeting, significant cellular uptake of the nanocomplexes, and successful silencing of TSC22D4 expression.</p><p><strong>Conclusion: </strong>This study suggests that DNAsome-based siRNA delivery systems hold promise for improving insulin sensitivity and addressing IR associated with obesity and metabolic syndrome.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"28 3","pages":"385-392"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790197/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanomolecular silencing of TSC22D4 mRNA via a DNAsome-siRNA for enhancing insulin sensitization in hepatocytes.\",\"authors\":\"Ameneh Mohammadi, Pedram Ebrahimnejad, Said Abediankenari, Zahra Kashi, Pooria Gill\",\"doi\":\"10.22038/ijbms.2024.81998.17744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Insulin resistance (IR) is a critical component of metabolic syndrome, primarily linked to obesity. It contributes to impaired glucose metabolism, beta-cell dysfunction, and the onset of type 2 diabetes. This study aimed to develop a DNAsome nanocarrier designed for the targeted delivery of small interfering RNA (siRNA) to inhibit mRNA of Transforming growth factor beta-like Stimulated Clone 22 D4 (TSC22D4), thereby enhancing insulin sensitivity in hepatocytes.</p><p><strong>Materials and methods: </strong>The DNAsome was constructed using Y-DNA building blocks derived from three distinct DNA oligonucleotides. Its structural characteristics were analyzed through atomic force microscopy (AFM). The functional efficacy of the DNAsome in delivering siRNA was evaluated by measuring its cellular uptake and ability to down-regulate TSC22D4 expression in HepG2 cells via real-time PCR. Additionally, the cytotoxicity and safety of both the DNAsome and the DNAsome-siRNA complexes were assessed using the MTT assay on HepG2 cells.</p><p><strong>Results: </strong>Findings indicated successful fabrication of the DNAsome nanocarriers, although aggregation was observed at higher concentrations, yielding nanoparticle sizes between 116 and 740 nm. Real-time PCR results confirmed effective siRNA targeting, significant cellular uptake of the nanocomplexes, and successful silencing of TSC22D4 expression.</p><p><strong>Conclusion: </strong>This study suggests that DNAsome-based siRNA delivery systems hold promise for improving insulin sensitivity and addressing IR associated with obesity and metabolic syndrome.</p>\",\"PeriodicalId\":14495,\"journal\":{\"name\":\"Iranian Journal of Basic Medical Sciences\",\"volume\":\"28 3\",\"pages\":\"385-392\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790197/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Basic Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22038/ijbms.2024.81998.17744\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/ijbms.2024.81998.17744","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:胰岛素抵抗(IR)是代谢综合征的一个重要组成部分,主要与肥胖有关。它会导致葡萄糖代谢受损、β细胞功能障碍和2型糖尿病的发病。本研究旨在开发一种靶向递送小干扰RNA (siRNA)的dna体纳米载体,以抑制转化生长因子β样刺激克隆22D4 (TSC22D4)的mRNA,从而增强肝细胞的胰岛素敏感性。材料和方法:DNA小体是由三种不同的DNA寡核苷酸组成的Y-DNA构建块构建的。通过原子力显微镜(AFM)分析了其结构特征。通过实时荧光定量PCR检测其在HepG2细胞中的细胞摄取和下调TSC22D4表达的能力,评估dna递送siRNA的功能功效。此外,在HepG2细胞上使用MTT试验评估了DNAsome和DNAsome- sirna复合物的细胞毒性和安全性。结果:研究结果表明脱氧核糖核酸体纳米载体的成功制备,尽管在较高浓度下观察到聚集,产生的纳米颗粒尺寸在116至740纳米之间。实时PCR结果证实了siRNA的有效靶向,纳米复合物的显著细胞摄取,以及TSC22D4表达的成功沉默。结论:这项研究表明,基于dna小体的siRNA递送系统有望改善胰岛素敏感性,并解决与肥胖和代谢综合征相关的IR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanomolecular silencing of TSC22D4 mRNA via a DNAsome-siRNA for enhancing insulin sensitization in hepatocytes.

Objectives: Insulin resistance (IR) is a critical component of metabolic syndrome, primarily linked to obesity. It contributes to impaired glucose metabolism, beta-cell dysfunction, and the onset of type 2 diabetes. This study aimed to develop a DNAsome nanocarrier designed for the targeted delivery of small interfering RNA (siRNA) to inhibit mRNA of Transforming growth factor beta-like Stimulated Clone 22 D4 (TSC22D4), thereby enhancing insulin sensitivity in hepatocytes.

Materials and methods: The DNAsome was constructed using Y-DNA building blocks derived from three distinct DNA oligonucleotides. Its structural characteristics were analyzed through atomic force microscopy (AFM). The functional efficacy of the DNAsome in delivering siRNA was evaluated by measuring its cellular uptake and ability to down-regulate TSC22D4 expression in HepG2 cells via real-time PCR. Additionally, the cytotoxicity and safety of both the DNAsome and the DNAsome-siRNA complexes were assessed using the MTT assay on HepG2 cells.

Results: Findings indicated successful fabrication of the DNAsome nanocarriers, although aggregation was observed at higher concentrations, yielding nanoparticle sizes between 116 and 740 nm. Real-time PCR results confirmed effective siRNA targeting, significant cellular uptake of the nanocomplexes, and successful silencing of TSC22D4 expression.

Conclusion: This study suggests that DNAsome-based siRNA delivery systems hold promise for improving insulin sensitivity and addressing IR associated with obesity and metabolic syndrome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Basic Medical Sciences
Iranian Journal of Basic Medical Sciences MEDICINE, RESEARCH & EXPERIMENTAL-PHARMACOLOGY & PHARMACY
CiteScore
4.00
自引率
4.50%
发文量
142
审稿时长
6-12 weeks
期刊介绍: The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信