Halil Asci, Suleyman Emre Akin, Hasan Ekrem Camas, Ahmet Bindal, Okan Kurtbolat, Serife Tasan, Abdurrahman Gulal, Rumeysa Taner, Turgut Kurt, Ozlem Ozmen
{"title":"研究氟伏沙明通过抗凋亡、抗炎和抗氧化作用对大鼠败血症相关急性肺损伤的保护作用。","authors":"Halil Asci, Suleyman Emre Akin, Hasan Ekrem Camas, Ahmet Bindal, Okan Kurtbolat, Serife Tasan, Abdurrahman Gulal, Rumeysa Taner, Turgut Kurt, Ozlem Ozmen","doi":"10.22038/ijbms.2024.80608.17444","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Acute lung injury (ALI) is characterized by severe hypoxia and alveolar damage, often caused by oxidative stress, endoplasmic reticulum stress (ERS), and apoptosis. Fluvoxamine (FLV), an antidepressant, has tissue-protective properties through various intracellular mechanisms. This study investigates the anti-inflammatory effects of FLV used as an antidepressant in a lipopolysaccharide (LPS)-induced ALI model.</p><p><strong>Materials and methods: </strong>Thirty-two female Wistar Albino rats aged 14-16 weeks and weighing 300-350 g, with 8 animals in each group, were divided into four groups: control, LPS, LPS+FLV, and FLV. After LPS administration, rats were euthanized, and histopathological analysis, immunohistochemistry for tumor necrosis factor-α (TNF-α) and caspase-3 (Cas-3), ELISA for oxidative stress markers, and PCR for CHOP, Cas-12, and Cas-9 gene expressions were conducted.</p><p><strong>Results: </strong>In the LPS group, lung tissue damage, increased inflammatory cell infiltration, increased Cas-3 and TNF-α expressions, increased oxidative stress markers, and increased CHOP, Cas-9, and Cas-12 mRNA expressions were observed compared to the control group. FLV treatment in the LPS+FLV group significantly reversed these effects in the LPS group.</p><p><strong>Conclusion: </strong>FLV exhibits protective effects against ALI by mitigating inflammation, ERS, and apoptosis via the CHOP/Cas-9/Cas-12 pathway. Further studies are needed to explore additional pathways and potential clinical applications of FLV.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"28 3","pages":"323-331"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790192/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the protective effects of fluvoxamine against sepsis-related acute lung injury through antiapoptotic, anti-inflammatory, and anti-oxidant features in rats.\",\"authors\":\"Halil Asci, Suleyman Emre Akin, Hasan Ekrem Camas, Ahmet Bindal, Okan Kurtbolat, Serife Tasan, Abdurrahman Gulal, Rumeysa Taner, Turgut Kurt, Ozlem Ozmen\",\"doi\":\"10.22038/ijbms.2024.80608.17444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Acute lung injury (ALI) is characterized by severe hypoxia and alveolar damage, often caused by oxidative stress, endoplasmic reticulum stress (ERS), and apoptosis. Fluvoxamine (FLV), an antidepressant, has tissue-protective properties through various intracellular mechanisms. This study investigates the anti-inflammatory effects of FLV used as an antidepressant in a lipopolysaccharide (LPS)-induced ALI model.</p><p><strong>Materials and methods: </strong>Thirty-two female Wistar Albino rats aged 14-16 weeks and weighing 300-350 g, with 8 animals in each group, were divided into four groups: control, LPS, LPS+FLV, and FLV. After LPS administration, rats were euthanized, and histopathological analysis, immunohistochemistry for tumor necrosis factor-α (TNF-α) and caspase-3 (Cas-3), ELISA for oxidative stress markers, and PCR for CHOP, Cas-12, and Cas-9 gene expressions were conducted.</p><p><strong>Results: </strong>In the LPS group, lung tissue damage, increased inflammatory cell infiltration, increased Cas-3 and TNF-α expressions, increased oxidative stress markers, and increased CHOP, Cas-9, and Cas-12 mRNA expressions were observed compared to the control group. FLV treatment in the LPS+FLV group significantly reversed these effects in the LPS group.</p><p><strong>Conclusion: </strong>FLV exhibits protective effects against ALI by mitigating inflammation, ERS, and apoptosis via the CHOP/Cas-9/Cas-12 pathway. Further studies are needed to explore additional pathways and potential clinical applications of FLV.</p>\",\"PeriodicalId\":14495,\"journal\":{\"name\":\"Iranian Journal of Basic Medical Sciences\",\"volume\":\"28 3\",\"pages\":\"323-331\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Basic Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22038/ijbms.2024.80608.17444\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/ijbms.2024.80608.17444","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Investigating the protective effects of fluvoxamine against sepsis-related acute lung injury through antiapoptotic, anti-inflammatory, and anti-oxidant features in rats.
Objectives: Acute lung injury (ALI) is characterized by severe hypoxia and alveolar damage, often caused by oxidative stress, endoplasmic reticulum stress (ERS), and apoptosis. Fluvoxamine (FLV), an antidepressant, has tissue-protective properties through various intracellular mechanisms. This study investigates the anti-inflammatory effects of FLV used as an antidepressant in a lipopolysaccharide (LPS)-induced ALI model.
Materials and methods: Thirty-two female Wistar Albino rats aged 14-16 weeks and weighing 300-350 g, with 8 animals in each group, were divided into four groups: control, LPS, LPS+FLV, and FLV. After LPS administration, rats were euthanized, and histopathological analysis, immunohistochemistry for tumor necrosis factor-α (TNF-α) and caspase-3 (Cas-3), ELISA for oxidative stress markers, and PCR for CHOP, Cas-12, and Cas-9 gene expressions were conducted.
Results: In the LPS group, lung tissue damage, increased inflammatory cell infiltration, increased Cas-3 and TNF-α expressions, increased oxidative stress markers, and increased CHOP, Cas-9, and Cas-12 mRNA expressions were observed compared to the control group. FLV treatment in the LPS+FLV group significantly reversed these effects in the LPS group.
Conclusion: FLV exhibits protective effects against ALI by mitigating inflammation, ERS, and apoptosis via the CHOP/Cas-9/Cas-12 pathway. Further studies are needed to explore additional pathways and potential clinical applications of FLV.
期刊介绍:
The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.