{"title":"Impacts of surface wear of attachments on maxillary canine distalization with clear aligners: a three-dimensional finite element study.","authors":"Qiuying Li, Bowen Xu, Dongyu Fang, Kai Yang","doi":"10.3389/fbioe.2025.1530133","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study established three-dimensional finite element models to explore the impacts of surface wear of attachments on maxillary canine distalization with clear aligners, thereby guiding the clinical application of attachments and enhancing the efficiency of clear aligner therapy.</p><p><strong>Materials and methods: </strong>Finite element models of maxillary canine distalization, including the maxilla, dentition, periodontal ligament, attachments (in both initial and worn states), and clear aligners, were established. Two groups of attachments (vertical rectangular attachment and optimized root control attachment) and five working conditions representing different degrees of attachment wear (M0, M2, M4, M6, and M8) were designed for canine distalization. Tooth displacement and equivalent stress in the roots and periodontal ligaments were analyzed.</p><p><strong>Results: </strong>The canines in both groups exhibited a tipping movement pattern under all working conditions. By M8, the distal displacement of the canine crown, the equivalent stress values in the roots, and the equivalent stress values in the periodontal ligaments in the rectangular attachment group decreased by 12.04%, 30.80%, and 16.48%, respectively, compared to M0. In the optimized root control attachment group, these values decreased by 24.98%, 34.69%, and 19.15%, respectively. However, under all working conditions, the canines in the rectangular attachment group presented greater displacement and stress. The greatest reduction in canine crown distal displacement and stress values was observed between M6 and M8 in the rectangular attachment group, but the efficiency of canine distalization was still 64.30% at M8, with minimal change. In the optimized root control attachment group, the greatest reduction was observed in M4-M6, and the efficiency of canine distalization decreased to less than 60% in response to M6.</p><p><strong>Conclusion: </strong>The canines tended to tip when maxillary canine distalization was performed with clear aligners. Attachment wear led to a reduction in the efficiency of canine distalization. Compared with optimized root control attachments, the impact was less significant for rectangular attachments. Once optimized root control attachments have been in place for more than 4 months and maxillary canine distalization is still required, orthodontists should closely monitor the wear of these attachments. If necessary, timely restoration or rebonding of the attachments is recommended.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1530133"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790557/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1530133","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Impacts of surface wear of attachments on maxillary canine distalization with clear aligners: a three-dimensional finite element study.
Objectives: This study established three-dimensional finite element models to explore the impacts of surface wear of attachments on maxillary canine distalization with clear aligners, thereby guiding the clinical application of attachments and enhancing the efficiency of clear aligner therapy.
Materials and methods: Finite element models of maxillary canine distalization, including the maxilla, dentition, periodontal ligament, attachments (in both initial and worn states), and clear aligners, were established. Two groups of attachments (vertical rectangular attachment and optimized root control attachment) and five working conditions representing different degrees of attachment wear (M0, M2, M4, M6, and M8) were designed for canine distalization. Tooth displacement and equivalent stress in the roots and periodontal ligaments were analyzed.
Results: The canines in both groups exhibited a tipping movement pattern under all working conditions. By M8, the distal displacement of the canine crown, the equivalent stress values in the roots, and the equivalent stress values in the periodontal ligaments in the rectangular attachment group decreased by 12.04%, 30.80%, and 16.48%, respectively, compared to M0. In the optimized root control attachment group, these values decreased by 24.98%, 34.69%, and 19.15%, respectively. However, under all working conditions, the canines in the rectangular attachment group presented greater displacement and stress. The greatest reduction in canine crown distal displacement and stress values was observed between M6 and M8 in the rectangular attachment group, but the efficiency of canine distalization was still 64.30% at M8, with minimal change. In the optimized root control attachment group, the greatest reduction was observed in M4-M6, and the efficiency of canine distalization decreased to less than 60% in response to M6.
Conclusion: The canines tended to tip when maxillary canine distalization was performed with clear aligners. Attachment wear led to a reduction in the efficiency of canine distalization. Compared with optimized root control attachments, the impact was less significant for rectangular attachments. Once optimized root control attachments have been in place for more than 4 months and maxillary canine distalization is still required, orthodontists should closely monitor the wear of these attachments. If necessary, timely restoration or rebonding of the attachments is recommended.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.