Alessandra Gobbo, Andrea Messina, Giorgio Vallortigara
{"title":"通过不对称游泳:斑马鱼作为大脑和行为侧化的模型。","authors":"Alessandra Gobbo, Andrea Messina, Giorgio Vallortigara","doi":"10.3389/fnbeh.2025.1527572","DOIUrl":null,"url":null,"abstract":"<p><p>The left and right sides of the brain show anatomical, neurochemical and functional differences. In the past century, brain and behavior lateralization was considered a human peculiarity associated with language and handedness. However, nowadays lateralization is known to occur among all vertebrates, from primates to fish. Fish, especially zebrafish (<i>Danio rerio</i>), have emerged as a crucial model for exploring the evolution and mechanisms of brain asymmetry. This review summarizes recent advances in zebrafish research on brain lateralization, highlighting how genetic tools, imaging, and transgenic methods have been used to investigate left-right asymmetries and their impact on sensory, cognitive, and social behaviors including possible links to neurodevelopmental and neurodegenerative disorders.</p>","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"19 ","pages":"1527572"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788415/pdf/","citationCount":"0","resultStr":"{\"title\":\"Swimming through asymmetry: zebrafish as a model for brain and behavior lateralization.\",\"authors\":\"Alessandra Gobbo, Andrea Messina, Giorgio Vallortigara\",\"doi\":\"10.3389/fnbeh.2025.1527572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The left and right sides of the brain show anatomical, neurochemical and functional differences. In the past century, brain and behavior lateralization was considered a human peculiarity associated with language and handedness. However, nowadays lateralization is known to occur among all vertebrates, from primates to fish. Fish, especially zebrafish (<i>Danio rerio</i>), have emerged as a crucial model for exploring the evolution and mechanisms of brain asymmetry. This review summarizes recent advances in zebrafish research on brain lateralization, highlighting how genetic tools, imaging, and transgenic methods have been used to investigate left-right asymmetries and their impact on sensory, cognitive, and social behaviors including possible links to neurodevelopmental and neurodegenerative disorders.</p>\",\"PeriodicalId\":12368,\"journal\":{\"name\":\"Frontiers in Behavioral Neuroscience\",\"volume\":\"19 \",\"pages\":\"1527572\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Behavioral Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbeh.2025.1527572\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnbeh.2025.1527572","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Swimming through asymmetry: zebrafish as a model for brain and behavior lateralization.
The left and right sides of the brain show anatomical, neurochemical and functional differences. In the past century, brain and behavior lateralization was considered a human peculiarity associated with language and handedness. However, nowadays lateralization is known to occur among all vertebrates, from primates to fish. Fish, especially zebrafish (Danio rerio), have emerged as a crucial model for exploring the evolution and mechanisms of brain asymmetry. This review summarizes recent advances in zebrafish research on brain lateralization, highlighting how genetic tools, imaging, and transgenic methods have been used to investigate left-right asymmetries and their impact on sensory, cognitive, and social behaviors including possible links to neurodevelopmental and neurodegenerative disorders.
期刊介绍:
Frontiers in Behavioral Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the neural mechanisms underlying behavior. Field Chief Editor Nuno Sousa at the Instituto de Pesquisa em Ciências da Vida e da Saúde (ICVS) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
This journal publishes major insights into the neural mechanisms of animal and human behavior, and welcomes articles studying the interplay between behavior and its neurobiological basis at all levels: from molecular biology and genetics, to morphological, biochemical, neurochemical, electrophysiological, neuroendocrine, pharmacological, and neuroimaging studies.