Guannan Cao, Songyao Zhang, Zhibin He, Zifan Wang, Lei Guo, Zhiqiang Yan, Junwei Han, Xi Jiang, Tuo Zhang
{"title":"HCP 和 CHCP 之间的 Gyral 峰值变化:功能和结构影响。","authors":"Guannan Cao, Songyao Zhang, Zhibin He, Zifan Wang, Lei Guo, Zhiqiang Yan, Junwei Han, Xi Jiang, Tuo Zhang","doi":"10.1007/s00429-025-02894-9","DOIUrl":null,"url":null,"abstract":"<p><p>Significant culture and ethnic diversity play an important role in shaping brain structure and function. Many attempts have been undertaken to connect ethnic variations with brain function, which, however, fluctuates over time and is costly, limiting its utility to identify consistent brain markers as well as its application to a broad population. In contrast, brain anatomy is less altered during a short period of time, but it is not fully understood whether it could serve as the ethnicity-sensitive landmark, or its variation is associated with functional one. In this study, We utilized gyral peaks, a set of early cortical folds, as cortical landmarks to explore the role of ethnic factors in brain anatomy and their relationship to brain function. Comparative experiments were conducted using the Human Connectome Project and the Chinese Human Connectome Project. In populations with similar ethnic backgrounds, gyral peak patterns showed greater consistency. For groups with significantly different ethnic backgrounds, we identified both shared peaks and peaks unique to each group. Compared to shared peaks, unique peaks showed significant differences in anatomical and functional network attributes and were spatially associated with working memory networks, which exhibited increased activation in their presence. Gene enrichment analysis provided additional support, suggesting that the unique peaks are associated with genes linked to working memory functions. These findings could provide new knowledge to understanding how ethnic diversity interplay with brain functions and associate with brain shapes.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 2","pages":"37"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gyral peak variations between HCP and CHCP: functional and structural implications.\",\"authors\":\"Guannan Cao, Songyao Zhang, Zhibin He, Zifan Wang, Lei Guo, Zhiqiang Yan, Junwei Han, Xi Jiang, Tuo Zhang\",\"doi\":\"10.1007/s00429-025-02894-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Significant culture and ethnic diversity play an important role in shaping brain structure and function. Many attempts have been undertaken to connect ethnic variations with brain function, which, however, fluctuates over time and is costly, limiting its utility to identify consistent brain markers as well as its application to a broad population. In contrast, brain anatomy is less altered during a short period of time, but it is not fully understood whether it could serve as the ethnicity-sensitive landmark, or its variation is associated with functional one. In this study, We utilized gyral peaks, a set of early cortical folds, as cortical landmarks to explore the role of ethnic factors in brain anatomy and their relationship to brain function. Comparative experiments were conducted using the Human Connectome Project and the Chinese Human Connectome Project. In populations with similar ethnic backgrounds, gyral peak patterns showed greater consistency. For groups with significantly different ethnic backgrounds, we identified both shared peaks and peaks unique to each group. Compared to shared peaks, unique peaks showed significant differences in anatomical and functional network attributes and were spatially associated with working memory networks, which exhibited increased activation in their presence. Gene enrichment analysis provided additional support, suggesting that the unique peaks are associated with genes linked to working memory functions. These findings could provide new knowledge to understanding how ethnic diversity interplay with brain functions and associate with brain shapes.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\"230 2\",\"pages\":\"37\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-025-02894-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-025-02894-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Gyral peak variations between HCP and CHCP: functional and structural implications.
Significant culture and ethnic diversity play an important role in shaping brain structure and function. Many attempts have been undertaken to connect ethnic variations with brain function, which, however, fluctuates over time and is costly, limiting its utility to identify consistent brain markers as well as its application to a broad population. In contrast, brain anatomy is less altered during a short period of time, but it is not fully understood whether it could serve as the ethnicity-sensitive landmark, or its variation is associated with functional one. In this study, We utilized gyral peaks, a set of early cortical folds, as cortical landmarks to explore the role of ethnic factors in brain anatomy and their relationship to brain function. Comparative experiments were conducted using the Human Connectome Project and the Chinese Human Connectome Project. In populations with similar ethnic backgrounds, gyral peak patterns showed greater consistency. For groups with significantly different ethnic backgrounds, we identified both shared peaks and peaks unique to each group. Compared to shared peaks, unique peaks showed significant differences in anatomical and functional network attributes and were spatially associated with working memory networks, which exhibited increased activation in their presence. Gene enrichment analysis provided additional support, suggesting that the unique peaks are associated with genes linked to working memory functions. These findings could provide new knowledge to understanding how ethnic diversity interplay with brain functions and associate with brain shapes.
期刊介绍:
Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.