Ashok Kumar Balaraman, Muhammad Afzal, Ehssan Moglad, M Arockia Babu, G Padma Priya, Pooja Bansal, Sumit Rajotiya, Benod Kumar Kondapavuluri, Imran Kazmi, Sami I Alzarea, Kavita Goyal, Haider Ali
{"title":"The interplay of p16INK4a and non-coding RNAs: bridging cellular senescence, aging, and cancer.","authors":"Ashok Kumar Balaraman, Muhammad Afzal, Ehssan Moglad, M Arockia Babu, G Padma Priya, Pooja Bansal, Sumit Rajotiya, Benod Kumar Kondapavuluri, Imran Kazmi, Sami I Alzarea, Kavita Goyal, Haider Ali","doi":"10.1007/s10522-025-10194-2","DOIUrl":null,"url":null,"abstract":"<p><p>p16INK4a is a crucial tumor suppressor and regulator of cellular senescence, forming a molecular bridge between aging and cancer. Dysregulated p16INK4a expression is linked to both premature aging and cancer progression, where non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs) play key roles in modulating its function. These ncRNAs interact with p16INK4a through complex post-transcriptional and epigenetic mechanisms, influencing pathways critical to senescence and tumor suppression. In this review, we explore ncRNAs, including ANRIL, MIR31HG, UCA1, MALAT1, miR-24, miR-30, and miR-141, which collectively regulate p16INK4a expression, promoting or inhibiting pathways associated with cancer and aging. ANRIL and MIR31HG modulate p16INK4a silencing via interactions with polycomb repressive complexes (PRC), while miRNAs such as miR-24 and miR-30 target p16INK4a to influence cellular proliferation and senescence. This regulatory interplay underscores the therapeutic potential of ncRNA-targeted strategies to restore p16INK4a function. We summarize recent studies supporting that ncRNAs that control p16INK4a may be diagnostic biomarkers and therapeutic targets for age-related diseases and cancer.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 2","pages":"50"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10194-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
The interplay of p16INK4a and non-coding RNAs: bridging cellular senescence, aging, and cancer.
p16INK4a is a crucial tumor suppressor and regulator of cellular senescence, forming a molecular bridge between aging and cancer. Dysregulated p16INK4a expression is linked to both premature aging and cancer progression, where non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs) play key roles in modulating its function. These ncRNAs interact with p16INK4a through complex post-transcriptional and epigenetic mechanisms, influencing pathways critical to senescence and tumor suppression. In this review, we explore ncRNAs, including ANRIL, MIR31HG, UCA1, MALAT1, miR-24, miR-30, and miR-141, which collectively regulate p16INK4a expression, promoting or inhibiting pathways associated with cancer and aging. ANRIL and MIR31HG modulate p16INK4a silencing via interactions with polycomb repressive complexes (PRC), while miRNAs such as miR-24 and miR-30 target p16INK4a to influence cellular proliferation and senescence. This regulatory interplay underscores the therapeutic potential of ncRNA-targeted strategies to restore p16INK4a function. We summarize recent studies supporting that ncRNAs that control p16INK4a may be diagnostic biomarkers and therapeutic targets for age-related diseases and cancer.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.