Susan Varghese, Merin K. Abraham, Ali Ibrahim Shkhair, Geneva Indongo, Greeshma Rajeevan, Arathy B. K., Anju S. Madanan and Sony George
{"title":"Near infrared-emitting carbon dots for the detection of glial fibrillary acidic protein (GFAP): a non-enzymatic approach for the early identification of stroke and glioblastoma†","authors":"Susan Varghese, Merin K. Abraham, Ali Ibrahim Shkhair, Geneva Indongo, Greeshma Rajeevan, Arathy B. K., Anju S. Madanan and Sony George","doi":"10.1039/D4AY02013H","DOIUrl":null,"url":null,"abstract":"<p >Immunoassay techniques are widely recognized for their sensitivity and selectivity in biomarker detection; however, their high cost, time-consuming protocols and limited stability often pose significant limitations. In this study, we address these challenges by developing an antibody-free fluorescent platform for the detection of glial fibrillary acidic protein (GFAP), a biomarker released from astrocytes, which plays a critical role in neurological diseases such as ischemic stroke and glioblastoma (GBM). Glutamic acid (GA), a neurotransmitter prevalent in the brain, was selected to quench a near-infrared (NIR) emitting carbon dot-based probe, exploiting the potential interaction between GA and GFAP. The probe demonstrated a turn-on response towards GFAP in the presence of various co-existing biomolecules and ions with a detection limit of 1.8 pg mL<small><sup>−1</sup></small>. A real sample assay conducted in human serum further validated the performance of the probe, achieving a recovery rate of 85% to 97%, underscoring the potential of the probe as a reliable and cost-effective tool for GFAP detection in clinical settings.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" 8","pages":" 1850-1859"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ay/d4ay02013h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Near infrared-emitting carbon dots for the detection of glial fibrillary acidic protein (GFAP): a non-enzymatic approach for the early identification of stroke and glioblastoma†
Immunoassay techniques are widely recognized for their sensitivity and selectivity in biomarker detection; however, their high cost, time-consuming protocols and limited stability often pose significant limitations. In this study, we address these challenges by developing an antibody-free fluorescent platform for the detection of glial fibrillary acidic protein (GFAP), a biomarker released from astrocytes, which plays a critical role in neurological diseases such as ischemic stroke and glioblastoma (GBM). Glutamic acid (GA), a neurotransmitter prevalent in the brain, was selected to quench a near-infrared (NIR) emitting carbon dot-based probe, exploiting the potential interaction between GA and GFAP. The probe demonstrated a turn-on response towards GFAP in the presence of various co-existing biomolecules and ions with a detection limit of 1.8 pg mL−1. A real sample assay conducted in human serum further validated the performance of the probe, achieving a recovery rate of 85% to 97%, underscoring the potential of the probe as a reliable and cost-effective tool for GFAP detection in clinical settings.