周期EOM-CCSD中电离能和电子亲和的有限尺寸效应:收敛速率和热力学极限的外推。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-02-25 Epub Date: 2025-02-04 DOI:10.1021/acs.jctc.4c01451
Evgeny Moerman, Alejandro Gallo, Andreas Irmler, Tobias Schäfer, Felix Hummel, Andreas Grüneis, Matthias Scheffler
{"title":"周期EOM-CCSD中电离能和电子亲和的有限尺寸效应:收敛速率和热力学极限的外推。","authors":"Evgeny Moerman, Alejandro Gallo, Andreas Irmler, Tobias Schäfer, Felix Hummel, Andreas Grüneis, Matthias Scheffler","doi":"10.1021/acs.jctc.4c01451","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the convergence of quasiparticle energies for periodic systems to the thermodynamic limit using increasingly large simulation cells corresponding to increasingly dense integration meshes in reciprocal space. The quasiparticle energies are computed at the level of equation-of-motion coupled-cluster theory for ionization (IP-EOM-CC) and electron attachment processes (EA-EOM-CC). By introducing an electronic correlation structure factor, the expected asymptotic convergence rates for systems with different dimensionality are formally derived. We rigorously test these derivations through numerical simulations for <i>trans</i>-polyacetylene using IP/EA-EOM-CCSD and the <i>G</i><sub>0</sub><i>W</i><sub>0</sub>@HF approximation, which confirm the predicted convergence behavior. Our findings provide a solid foundation for efficient schemes to correct finite-size errors in IP/EA-EOM-CCSD calculations.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"1865-1878"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866753/pdf/","citationCount":"0","resultStr":"{\"title\":\"Finite-Size Effects in Periodic EOM-CCSD for Ionization Energies and Electron Affinities: Convergence Rate and Extrapolation to the Thermodynamic Limit.\",\"authors\":\"Evgeny Moerman, Alejandro Gallo, Andreas Irmler, Tobias Schäfer, Felix Hummel, Andreas Grüneis, Matthias Scheffler\",\"doi\":\"10.1021/acs.jctc.4c01451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the convergence of quasiparticle energies for periodic systems to the thermodynamic limit using increasingly large simulation cells corresponding to increasingly dense integration meshes in reciprocal space. The quasiparticle energies are computed at the level of equation-of-motion coupled-cluster theory for ionization (IP-EOM-CC) and electron attachment processes (EA-EOM-CC). By introducing an electronic correlation structure factor, the expected asymptotic convergence rates for systems with different dimensionality are formally derived. We rigorously test these derivations through numerical simulations for <i>trans</i>-polyacetylene using IP/EA-EOM-CCSD and the <i>G</i><sub>0</sub><i>W</i><sub>0</sub>@HF approximation, which confirm the predicted convergence behavior. Our findings provide a solid foundation for efficient schemes to correct finite-size errors in IP/EA-EOM-CCSD calculations.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"1865-1878\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866753/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c01451\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01451","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了周期系统的准粒子能量收敛到热力学极限,使用越来越大的模拟单元对应于倒易空间中越来越密集的积分网格。准粒子的能量是在运动方程耦合团簇理论的电离(IP-EOM-CC)和电子附着过程(EA-EOM-CC)的水平上计算的。通过引入电子相关结构因子,形式化地导出了不同维数系统的期望渐近收敛速率。我们通过IP/EA-EOM-CCSD和G0W0@HF近似对这些推导进行了严格的数值模拟,证实了预测的收敛行为。我们的发现为修正IP/EA-EOM-CCSD计算中有限尺寸误差的有效方案提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Finite-Size Effects in Periodic EOM-CCSD for Ionization Energies and Electron Affinities: Convergence Rate and Extrapolation to the Thermodynamic Limit.

Finite-Size Effects in Periodic EOM-CCSD for Ionization Energies and Electron Affinities: Convergence Rate and Extrapolation to the Thermodynamic Limit.

Finite-Size Effects in Periodic EOM-CCSD for Ionization Energies and Electron Affinities: Convergence Rate and Extrapolation to the Thermodynamic Limit.

Finite-Size Effects in Periodic EOM-CCSD for Ionization Energies and Electron Affinities: Convergence Rate and Extrapolation to the Thermodynamic Limit.

We investigate the convergence of quasiparticle energies for periodic systems to the thermodynamic limit using increasingly large simulation cells corresponding to increasingly dense integration meshes in reciprocal space. The quasiparticle energies are computed at the level of equation-of-motion coupled-cluster theory for ionization (IP-EOM-CC) and electron attachment processes (EA-EOM-CC). By introducing an electronic correlation structure factor, the expected asymptotic convergence rates for systems with different dimensionality are formally derived. We rigorously test these derivations through numerical simulations for trans-polyacetylene using IP/EA-EOM-CCSD and the G0W0@HF approximation, which confirm the predicted convergence behavior. Our findings provide a solid foundation for efficient schemes to correct finite-size errors in IP/EA-EOM-CCSD calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信