过度高强度间歇训练后骨骼肌过度伸展的细胞机制。

IF 5 2区 生物学 Q2 CELL BIOLOGY
Daiki Watanabe, Masanobu Wada
{"title":"过度高强度间歇训练后骨骼肌过度伸展的细胞机制。","authors":"Daiki Watanabe, Masanobu Wada","doi":"10.1152/ajpcell.00623.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Overreaching (OR) can be defined as a decline in physical performance resulting from excessive exercise training, necessitating days to weeks recovery. Impairments in the contractile function of skeletal muscle are believed to be a primary factor contributing to OR. However, the cellular mechanism triggering OR remains unclear. The purpose of this study was to elucidate the mechanisms underlying OR. Rats' plantar flexor muscles were subjected to repeated electrical stimulations mimicking excessive high-intensity interval training (HIIT) daily for 13 consecutive days, and isometric torques were monitored. The torque was measured one day after HIIT, and subsequently, the physiological function of type II fibers was analyzed by using mechanically skinned-fiber technique. Eleven of 17 rats exhibited torque decline, whereas others did not. Thus, the rats were divided into OR and nonoverreaching (NOR) groups. Skinned fibers from the gastrocnemius (GAS) muscles of both groups showed decreased depolarization-induced force and increased myofibrillar Ca<sup>2+</sup> sensitivity. However, the fibers from the OR group, but not the NOR group, exhibited a decrease in myofibrillar maximal force. Biochemical analyses of a superficial region of GAS muscle revealed that α-actinin 2 content was increased in the NOR group, but not in the OR group, whereas calpain-3 autolysis was increased in the OR group, but not in the NOR group. These findings shed light on the cellular mechanism underlying OR: OR following excessive HIIT was induced by a decreased myofibrillar maximal force, whereas Ca<sup>2+</sup> sensitivity was increased.<b>NEW & NOTEWORTHY</b> An early sign of overtraining is a performance impairment known as overreaching (OR). This study revealed the cellular mechanism underlying OR by combining in vivo fatiguing contractions with mechanically skinned-fiber technique. Thirteen consecutive days of intense training result in myofibrillar force depression in OR. This study provides valuable insights not only for athletes and coaches but also for nonathletes who incorporate exercise into their daily activity.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C921-C938"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular mechanisms underlying overreaching in skeletal muscle following excessive high-intensity interval training.\",\"authors\":\"Daiki Watanabe, Masanobu Wada\",\"doi\":\"10.1152/ajpcell.00623.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Overreaching (OR) can be defined as a decline in physical performance resulting from excessive exercise training, necessitating days to weeks recovery. Impairments in the contractile function of skeletal muscle are believed to be a primary factor contributing to OR. However, the cellular mechanism triggering OR remains unclear. The purpose of this study was to elucidate the mechanisms underlying OR. Rats' plantar flexor muscles were subjected to repeated electrical stimulations mimicking excessive high-intensity interval training (HIIT) daily for 13 consecutive days, and isometric torques were monitored. The torque was measured one day after HIIT, and subsequently, the physiological function of type II fibers was analyzed by using mechanically skinned-fiber technique. Eleven of 17 rats exhibited torque decline, whereas others did not. Thus, the rats were divided into OR and nonoverreaching (NOR) groups. Skinned fibers from the gastrocnemius (GAS) muscles of both groups showed decreased depolarization-induced force and increased myofibrillar Ca<sup>2+</sup> sensitivity. However, the fibers from the OR group, but not the NOR group, exhibited a decrease in myofibrillar maximal force. Biochemical analyses of a superficial region of GAS muscle revealed that α-actinin 2 content was increased in the NOR group, but not in the OR group, whereas calpain-3 autolysis was increased in the OR group, but not in the NOR group. These findings shed light on the cellular mechanism underlying OR: OR following excessive HIIT was induced by a decreased myofibrillar maximal force, whereas Ca<sup>2+</sup> sensitivity was increased.<b>NEW & NOTEWORTHY</b> An early sign of overtraining is a performance impairment known as overreaching (OR). This study revealed the cellular mechanism underlying OR by combining in vivo fatiguing contractions with mechanically skinned-fiber technique. Thirteen consecutive days of intense training result in myofibrillar force depression in OR. This study provides valuable insights not only for athletes and coaches but also for nonathletes who incorporate exercise into their daily activity.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C921-C938\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00623.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00623.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过度运动(OR)可以定义为由于过度运动训练导致的身体表现下降,需要几天到几周的恢复。骨骼肌收缩功能的损伤被认为是导致OR的主要因素。然而,引发OR的细胞机制尚不清楚。本研究的目的是阐明OR的发病机制。连续13天,每天对大鼠的足底屈肌进行模拟高强度间歇训练(HIIT)的重复电刺激,并监测等长扭矩。HIIT后1天测量扭矩,随后采用机械剥皮纤维技术分析II型纤维的生理功能。17只大鼠中有11只表现出扭矩下降,而其他大鼠没有。因此,将大鼠分为OR组和非过伸(NOR)组。两组腓肠肌(GAS)的皮肤纤维显示去极化诱导力降低,肌纤维Ca2+敏感性增加。然而,来自OR组的纤维,而不是NOR组,表现出肌纤维最大力的下降。体外生化分析结果显示,NOR组大鼠GAS肌浅表区α- actiin 2含量升高,而非OR组;calpain-3自溶升高,而非OR组。这些发现揭示了OR的细胞机制:过度HIIT后的OR是由肌纤维最大力下降引起的,而Ca2+敏感性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellular mechanisms underlying overreaching in skeletal muscle following excessive high-intensity interval training.

Overreaching (OR) can be defined as a decline in physical performance resulting from excessive exercise training, necessitating days to weeks recovery. Impairments in the contractile function of skeletal muscle are believed to be a primary factor contributing to OR. However, the cellular mechanism triggering OR remains unclear. The purpose of this study was to elucidate the mechanisms underlying OR. Rats' plantar flexor muscles were subjected to repeated electrical stimulations mimicking excessive high-intensity interval training (HIIT) daily for 13 consecutive days, and isometric torques were monitored. The torque was measured one day after HIIT, and subsequently, the physiological function of type II fibers was analyzed by using mechanically skinned-fiber technique. Eleven of 17 rats exhibited torque decline, whereas others did not. Thus, the rats were divided into OR and nonoverreaching (NOR) groups. Skinned fibers from the gastrocnemius (GAS) muscles of both groups showed decreased depolarization-induced force and increased myofibrillar Ca2+ sensitivity. However, the fibers from the OR group, but not the NOR group, exhibited a decrease in myofibrillar maximal force. Biochemical analyses of a superficial region of GAS muscle revealed that α-actinin 2 content was increased in the NOR group, but not in the OR group, whereas calpain-3 autolysis was increased in the OR group, but not in the NOR group. These findings shed light on the cellular mechanism underlying OR: OR following excessive HIIT was induced by a decreased myofibrillar maximal force, whereas Ca2+ sensitivity was increased.NEW & NOTEWORTHY An early sign of overtraining is a performance impairment known as overreaching (OR). This study revealed the cellular mechanism underlying OR by combining in vivo fatiguing contractions with mechanically skinned-fiber technique. Thirteen consecutive days of intense training result in myofibrillar force depression in OR. This study provides valuable insights not only for athletes and coaches but also for nonathletes who incorporate exercise into their daily activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信