Duccio Di Prima, Laura Pedraza-González, Peter Reinholdt, Jacob Kongsted, Benedetta Mennucci
{"title":"荧光紫红质:具有成本效益的QM/MM方法的挑战性测试。","authors":"Duccio Di Prima, Laura Pedraza-González, Peter Reinholdt, Jacob Kongsted, Benedetta Mennucci","doi":"10.1021/acs.jpca.4c07733","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we evaluate the performance of two cost-effective models, namely, TD-DFT and ΔSCF methods, combined with different molecular mechanics models, to predict the photophysical and photochemical properties of a set of fluorescent mutants of the microbial rhodopsin Archaerhodopsin-3. We investigate absorption energies and excited-state isomerization barriers of the embedded retinal protonated Schiff-base chromophore by comparing different DFT functionals as well as different approximations of the embedding model. For absorption energies, CAM-B3LYP demonstrates the most consistent alignment with experiments among the functionals tested, whereas the embedding potentials exhibit similar accuracy. However, incorporating linear response corrections within the polarizable TD-DFT/MM framework enhances accuracy. The photoisomerization barriers, instead, exhibit a pronounced sensitivity to the choice of embedding model, underscoring the complex role that environmental factors play in modulating predictions of excited-state processes. For the two properties here investigated, ΔSCF/MM presents qualitatively similar behavior with respect to TD-DFT for all the tested embedding models.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"1769-1778"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescent Rhodopsins: A Challenging Test for Cost-Effective QM/MM Approaches.\",\"authors\":\"Duccio Di Prima, Laura Pedraza-González, Peter Reinholdt, Jacob Kongsted, Benedetta Mennucci\",\"doi\":\"10.1021/acs.jpca.4c07733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we evaluate the performance of two cost-effective models, namely, TD-DFT and ΔSCF methods, combined with different molecular mechanics models, to predict the photophysical and photochemical properties of a set of fluorescent mutants of the microbial rhodopsin Archaerhodopsin-3. We investigate absorption energies and excited-state isomerization barriers of the embedded retinal protonated Schiff-base chromophore by comparing different DFT functionals as well as different approximations of the embedding model. For absorption energies, CAM-B3LYP demonstrates the most consistent alignment with experiments among the functionals tested, whereas the embedding potentials exhibit similar accuracy. However, incorporating linear response corrections within the polarizable TD-DFT/MM framework enhances accuracy. The photoisomerization barriers, instead, exhibit a pronounced sensitivity to the choice of embedding model, underscoring the complex role that environmental factors play in modulating predictions of excited-state processes. For the two properties here investigated, ΔSCF/MM presents qualitatively similar behavior with respect to TD-DFT for all the tested embedding models.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"1769-1778\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c07733\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07733","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fluorescent Rhodopsins: A Challenging Test for Cost-Effective QM/MM Approaches.
In this study, we evaluate the performance of two cost-effective models, namely, TD-DFT and ΔSCF methods, combined with different molecular mechanics models, to predict the photophysical and photochemical properties of a set of fluorescent mutants of the microbial rhodopsin Archaerhodopsin-3. We investigate absorption energies and excited-state isomerization barriers of the embedded retinal protonated Schiff-base chromophore by comparing different DFT functionals as well as different approximations of the embedding model. For absorption energies, CAM-B3LYP demonstrates the most consistent alignment with experiments among the functionals tested, whereas the embedding potentials exhibit similar accuracy. However, incorporating linear response corrections within the polarizable TD-DFT/MM framework enhances accuracy. The photoisomerization barriers, instead, exhibit a pronounced sensitivity to the choice of embedding model, underscoring the complex role that environmental factors play in modulating predictions of excited-state processes. For the two properties here investigated, ΔSCF/MM presents qualitatively similar behavior with respect to TD-DFT for all the tested embedding models.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.