Carmen Pérez-Alonso, Fátima Lasala, Laura Rodríguez-Pérez, Rafael Delgado, Javier Rojo, Javier Ramos-Soriano
{"title":"聚糖-二氧化硅纳米颗粒作为阻断病毒感染的有效抑制剂。","authors":"Carmen Pérez-Alonso, Fátima Lasala, Laura Rodríguez-Pérez, Rafael Delgado, Javier Rojo, Javier Ramos-Soriano","doi":"10.1021/acsami.4c15918","DOIUrl":null,"url":null,"abstract":"<p><p>Small solid silica nanoparticles (SiNPs) have been used for multivalent carbohydrate presentation in DC-/L-SIGN-mediated viral infection models. Glycosylated SiNPs (glycoSiNPs) were fully characterized by different experimental techniques, including NMR, DLS, TGA, FTIR, and XPS, which confirmed their chemical structures. As a proof-of-concept, the capacity of glycoSiNPs to interact with Concanavalin A (ConA), a model lectin, using DLS binding experiments and UV-vis turbidimetry assays was analyzed. Their antiviral activity was assessed in a cellular assay using an artificial Ebola virus, demonstrating the potent inhibition of DC-SIGN-mediated infection. Notably, glycoSiNPs functionalized with a trivalent Manα1,2Man glycodendron exhibited the strongest inhibitory activity, with an IC<sub>50</sub> of 135 ng/mL and a 170-fold lower efficiency in blocking L-SIGN-mediated viral infection. These findings suggest that glycoSiNPs present a promising approach for developing antiviral agents that selectively target the DC-SIGN pathway over the L-SIGN one.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"10292-10304"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881045/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glycan-Silica Nanoparticles as Effective Inhibitors for Blocking Virus Infection.\",\"authors\":\"Carmen Pérez-Alonso, Fátima Lasala, Laura Rodríguez-Pérez, Rafael Delgado, Javier Rojo, Javier Ramos-Soriano\",\"doi\":\"10.1021/acsami.4c15918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small solid silica nanoparticles (SiNPs) have been used for multivalent carbohydrate presentation in DC-/L-SIGN-mediated viral infection models. Glycosylated SiNPs (glycoSiNPs) were fully characterized by different experimental techniques, including NMR, DLS, TGA, FTIR, and XPS, which confirmed their chemical structures. As a proof-of-concept, the capacity of glycoSiNPs to interact with Concanavalin A (ConA), a model lectin, using DLS binding experiments and UV-vis turbidimetry assays was analyzed. Their antiviral activity was assessed in a cellular assay using an artificial Ebola virus, demonstrating the potent inhibition of DC-SIGN-mediated infection. Notably, glycoSiNPs functionalized with a trivalent Manα1,2Man glycodendron exhibited the strongest inhibitory activity, with an IC<sub>50</sub> of 135 ng/mL and a 170-fold lower efficiency in blocking L-SIGN-mediated viral infection. These findings suggest that glycoSiNPs present a promising approach for developing antiviral agents that selectively target the DC-SIGN pathway over the L-SIGN one.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"10292-10304\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c15918\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15918","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Glycan-Silica Nanoparticles as Effective Inhibitors for Blocking Virus Infection.
Small solid silica nanoparticles (SiNPs) have been used for multivalent carbohydrate presentation in DC-/L-SIGN-mediated viral infection models. Glycosylated SiNPs (glycoSiNPs) were fully characterized by different experimental techniques, including NMR, DLS, TGA, FTIR, and XPS, which confirmed their chemical structures. As a proof-of-concept, the capacity of glycoSiNPs to interact with Concanavalin A (ConA), a model lectin, using DLS binding experiments and UV-vis turbidimetry assays was analyzed. Their antiviral activity was assessed in a cellular assay using an artificial Ebola virus, demonstrating the potent inhibition of DC-SIGN-mediated infection. Notably, glycoSiNPs functionalized with a trivalent Manα1,2Man glycodendron exhibited the strongest inhibitory activity, with an IC50 of 135 ng/mL and a 170-fold lower efficiency in blocking L-SIGN-mediated viral infection. These findings suggest that glycoSiNPs present a promising approach for developing antiviral agents that selectively target the DC-SIGN pathway over the L-SIGN one.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.