VPS18 促进受结核分枝杆菌感染的巨噬细胞中吞噬体膜的完整性

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-01-31
Charul Jani, Neha Jain, Amanda K. Marsh, Pooja Uchil, Triet Doan, Meggie Hudspith, Owen T. Glover, Zach R. Baskir, Julie Boucau, David E. Root, Nicole N. van der Wel, John G. Doench, Amy K. Barczak
{"title":"VPS18 促进受结核分枝杆菌感染的巨噬细胞中吞噬体膜的完整性","authors":"Charul Jani,&nbsp;Neha Jain,&nbsp;Amanda K. Marsh,&nbsp;Pooja Uchil,&nbsp;Triet Doan,&nbsp;Meggie Hudspith,&nbsp;Owen T. Glover,&nbsp;Zach R. Baskir,&nbsp;Julie Boucau,&nbsp;David E. Root,&nbsp;Nicole N. van der Wel,&nbsp;John G. Doench,&nbsp;Amy K. Barczak","doi":"","DOIUrl":null,"url":null,"abstract":"<div ><i>Mycobacterium tuberculosis</i> (Mtb) has evolved to be exquisitely adapted to survive within host macrophages. The capacity to damage the phagosomal membrane has emerged as central to Mtb virulence. While Mtb factors driving membrane damage have been described, host factors that maintain phagosomal integrity or repair Mtb-induced damage to contain the pathogen remain largely unknown. We used a genome-wide CRISPR screen to identify host factors required to repair Mtb-damaged phagosomal membranes. Vacuolar protein sorting–associated protein 18 (VPS18), a member of the HOPS and CORVET trafficking complexes, was among the top hits. VPS18 colocalized with Mtb in macrophages beginning shortly after infection, and <i>VPS18</i>-knockout macrophages demonstrated increased damage of Mtb-containing phagosomes without impaired autophagy. Mtb grew more robustly in <i>VPS18</i>-knockout cells, and the first-line antituberculosis antibiotic pyrazinamide was less effective. Our results identify VPS18 as required for phagosomal membrane integrity in Mtb-infected cells and suggest that modulating phagosome integrity may hold promise for improving the efficacy of antibiotic treatment for TB.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr6166","citationCount":"0","resultStr":"{\"title\":\"VPS18 contributes to phagosome membrane integrity in Mycobacterium tuberculosis–infected macrophages\",\"authors\":\"Charul Jani,&nbsp;Neha Jain,&nbsp;Amanda K. Marsh,&nbsp;Pooja Uchil,&nbsp;Triet Doan,&nbsp;Meggie Hudspith,&nbsp;Owen T. Glover,&nbsp;Zach R. Baskir,&nbsp;Julie Boucau,&nbsp;David E. Root,&nbsp;Nicole N. van der Wel,&nbsp;John G. Doench,&nbsp;Amy K. Barczak\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div ><i>Mycobacterium tuberculosis</i> (Mtb) has evolved to be exquisitely adapted to survive within host macrophages. The capacity to damage the phagosomal membrane has emerged as central to Mtb virulence. While Mtb factors driving membrane damage have been described, host factors that maintain phagosomal integrity or repair Mtb-induced damage to contain the pathogen remain largely unknown. We used a genome-wide CRISPR screen to identify host factors required to repair Mtb-damaged phagosomal membranes. Vacuolar protein sorting–associated protein 18 (VPS18), a member of the HOPS and CORVET trafficking complexes, was among the top hits. VPS18 colocalized with Mtb in macrophages beginning shortly after infection, and <i>VPS18</i>-knockout macrophages demonstrated increased damage of Mtb-containing phagosomes without impaired autophagy. Mtb grew more robustly in <i>VPS18</i>-knockout cells, and the first-line antituberculosis antibiotic pyrazinamide was less effective. Our results identify VPS18 as required for phagosomal membrane integrity in Mtb-infected cells and suggest that modulating phagosome integrity may hold promise for improving the efficacy of antibiotic treatment for TB.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adr6166\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adr6166\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr6166","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

VPS18 contributes to phagosome membrane integrity in Mycobacterium tuberculosis–infected macrophages

VPS18 contributes to phagosome membrane integrity in Mycobacterium tuberculosis–infected macrophages
Mycobacterium tuberculosis (Mtb) has evolved to be exquisitely adapted to survive within host macrophages. The capacity to damage the phagosomal membrane has emerged as central to Mtb virulence. While Mtb factors driving membrane damage have been described, host factors that maintain phagosomal integrity or repair Mtb-induced damage to contain the pathogen remain largely unknown. We used a genome-wide CRISPR screen to identify host factors required to repair Mtb-damaged phagosomal membranes. Vacuolar protein sorting–associated protein 18 (VPS18), a member of the HOPS and CORVET trafficking complexes, was among the top hits. VPS18 colocalized with Mtb in macrophages beginning shortly after infection, and VPS18-knockout macrophages demonstrated increased damage of Mtb-containing phagosomes without impaired autophagy. Mtb grew more robustly in VPS18-knockout cells, and the first-line antituberculosis antibiotic pyrazinamide was less effective. Our results identify VPS18 as required for phagosomal membrane integrity in Mtb-infected cells and suggest that modulating phagosome integrity may hold promise for improving the efficacy of antibiotic treatment for TB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信