IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-01-31
Qixin Feng, Can B. Uzundal, Ruihan Guo, Collin Sanborn, Ruishi Qi, Jingxu Xie, Jianing Zhang, Junqiao Wu, Feng Wang
{"title":"Femtojoule optical nonlinearity for deep learning with incoherent illumination","authors":"Qixin Feng,&nbsp;Can B. Uzundal,&nbsp;Ruihan Guo,&nbsp;Collin Sanborn,&nbsp;Ruishi Qi,&nbsp;Jingxu Xie,&nbsp;Jianing Zhang,&nbsp;Junqiao Wu,&nbsp;Feng Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Optical neural networks (ONNs) are a promising computational alternative for deep learning due to their inherent massive parallelism for linear operations. However, the development of energy-efficient and highly parallel optical nonlinearities, a critical component in ONNs, remains an outstanding challenge. Here, we introduce a nonlinear optical microdevice array (NOMA) compatible with incoherent illumination by integrating the liquid crystal cell with silicon photodiodes at the single-pixel level. We fabricate NOMA with more than half a million pixels, each functioning as an optical analog of the rectified linear unit at ultralow switching energy down to 100 femtojoules per pixel. With NOMA, we demonstrate an optical multilayer neural network. Our work holds promise for large-scale and low-power deep ONNs, computer vision, and real-time optical image processing.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads4224","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads4224","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光学神经网络(ONN)因其线性运算固有的大规模并行性,成为深度学习的一种有前途的计算替代方案。然而,作为光学神经网络的关键组件,高能效、高并行性光学非线性的开发仍然是一个突出的挑战。在这里,我们通过在单像素级将液晶单元与硅光电二极管集成,推出了一种兼容非相干照明的非线性光学微器件阵列(NOMA)。我们制造出了具有 50 多万个像素的 NOMA,每个像素都能以低至 100 飞焦耳的超低开关能量发挥整流线性单元的光学模拟功能。通过 NOMA,我们展示了一个光学多层神经网络。我们的工作为大规模、低功耗深度神经网络、计算机视觉和实时光学图像处理带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Femtojoule optical nonlinearity for deep learning with incoherent illumination

Femtojoule optical nonlinearity for deep learning with incoherent illumination
Optical neural networks (ONNs) are a promising computational alternative for deep learning due to their inherent massive parallelism for linear operations. However, the development of energy-efficient and highly parallel optical nonlinearities, a critical component in ONNs, remains an outstanding challenge. Here, we introduce a nonlinear optical microdevice array (NOMA) compatible with incoherent illumination by integrating the liquid crystal cell with silicon photodiodes at the single-pixel level. We fabricate NOMA with more than half a million pixels, each functioning as an optical analog of the rectified linear unit at ultralow switching energy down to 100 femtojoules per pixel. With NOMA, we demonstrate an optical multilayer neural network. Our work holds promise for large-scale and low-power deep ONNs, computer vision, and real-time optical image processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信