真空加工有机光电二极管的研究进展与挑战

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chan So, Won Jun Pyo, Dae Sung Chung
{"title":"真空加工有机光电二极管的研究进展与挑战","authors":"Chan So,&nbsp;Won Jun Pyo,&nbsp;Dae Sung Chung","doi":"10.1002/adpr.202400094","DOIUrl":null,"url":null,"abstract":"<p>Organic photodiodes (OPDs) have made remarkable strides and now poised to surpass traditional silicon photodiodes (PDs) in various aspects including linear dynamic range (LDR), detectivity, wavelength selectivity, and versatility.<sup>[</sup><sup>1</sup><sup>]</sup> Tunable mechanical and optoelectronic properties of organic semiconductors, coupled with lower process costs, have propelled OPDs into the spotlight across fields such as wearable light fidelity systems, flexible image sensors, and biomedical imaging.<sup>[</sup><sup>2–5</sup><sup>]</sup> While most advanced organic imaging systems to date rely on polymer-based solution processes, challenges such as the use of toxic organic solvents and reproducibility issues hinder their commercialization.<sup>[</sup><sup>6,7</sup><sup>]</sup> Vacuum-processed OPDs offer a promising alternative, boasting eco-friendliness and compatibility with large-scale fabrication facilities.<sup>[</sup><sup>8,9</sup><sup>]</sup> In this review, recent advancements and challenges in vacuum-processed OPDs, an area that has received less attention compared to solution-processed counterparts, are explored. Herein, four primary pathways for development of vacuum-processed OPDs are outlined: 1) ultraviolet-selective OPDs, 2) visible-light-selective OPDs, 3) near-infrared or short-wave-infrared-sensitive OPDs, and 4) addressing challenges such as higher noise currents compared to inorganic PDs. In this review, it is aimed to furnish readers with a comprehensive understanding of vacuum-processed OPDs, spanning from materials design to device engineering.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400094","citationCount":"0","resultStr":"{\"title\":\"Advancements and Challenges of Vacuum-Processed Organic Photodiodes: A Comprehensive Review\",\"authors\":\"Chan So,&nbsp;Won Jun Pyo,&nbsp;Dae Sung Chung\",\"doi\":\"10.1002/adpr.202400094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic photodiodes (OPDs) have made remarkable strides and now poised to surpass traditional silicon photodiodes (PDs) in various aspects including linear dynamic range (LDR), detectivity, wavelength selectivity, and versatility.<sup>[</sup><sup>1</sup><sup>]</sup> Tunable mechanical and optoelectronic properties of organic semiconductors, coupled with lower process costs, have propelled OPDs into the spotlight across fields such as wearable light fidelity systems, flexible image sensors, and biomedical imaging.<sup>[</sup><sup>2–5</sup><sup>]</sup> While most advanced organic imaging systems to date rely on polymer-based solution processes, challenges such as the use of toxic organic solvents and reproducibility issues hinder their commercialization.<sup>[</sup><sup>6,7</sup><sup>]</sup> Vacuum-processed OPDs offer a promising alternative, boasting eco-friendliness and compatibility with large-scale fabrication facilities.<sup>[</sup><sup>8,9</sup><sup>]</sup> In this review, recent advancements and challenges in vacuum-processed OPDs, an area that has received less attention compared to solution-processed counterparts, are explored. Herein, four primary pathways for development of vacuum-processed OPDs are outlined: 1) ultraviolet-selective OPDs, 2) visible-light-selective OPDs, 3) near-infrared or short-wave-infrared-sensitive OPDs, and 4) addressing challenges such as higher noise currents compared to inorganic PDs. In this review, it is aimed to furnish readers with a comprehensive understanding of vacuum-processed OPDs, spanning from materials design to device engineering.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400094\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机光电二极管(OPDs)在线性动态范围(LDR)、探测性、波长选择性和通用性等方面取得了显著的进步,现在已经准备好超越传统的硅光电二极管(pd)有机半导体可调的机械和光电性能,加上较低的工艺成本,推动opd成为可穿戴光保真系统、柔性图像传感器和生物医学成像等领域的焦点。[2-5]虽然迄今为止最先进的有机成像系统依赖于基于聚合物的溶液工艺,但使用有毒有机溶剂和可重复性问题等挑战阻碍了它们的商业化。[6,7]真空加工的opd提供了一个很有前途的选择,具有生态友好性和与大规模制造设施的兼容性。[8,9]在这篇综述中,探讨了真空加工opd的最新进展和挑战,这一领域与溶液加工的opd相比受到的关注较少。本文概述了真空加工opd的四个主要发展途径:1)紫外选择性opd, 2)可见光选择性opd, 3)近红外或短波红外敏感opd,以及4)解决诸如与无机pd相比更高噪声电流等挑战。在这篇综述中,旨在为读者提供从材料设计到设备工程的真空加工opd的全面了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancements and Challenges of Vacuum-Processed Organic Photodiodes: A Comprehensive Review

Advancements and Challenges of Vacuum-Processed Organic Photodiodes: A Comprehensive Review

Organic photodiodes (OPDs) have made remarkable strides and now poised to surpass traditional silicon photodiodes (PDs) in various aspects including linear dynamic range (LDR), detectivity, wavelength selectivity, and versatility.[1] Tunable mechanical and optoelectronic properties of organic semiconductors, coupled with lower process costs, have propelled OPDs into the spotlight across fields such as wearable light fidelity systems, flexible image sensors, and biomedical imaging.[2–5] While most advanced organic imaging systems to date rely on polymer-based solution processes, challenges such as the use of toxic organic solvents and reproducibility issues hinder their commercialization.[6,7] Vacuum-processed OPDs offer a promising alternative, boasting eco-friendliness and compatibility with large-scale fabrication facilities.[8,9] In this review, recent advancements and challenges in vacuum-processed OPDs, an area that has received less attention compared to solution-processed counterparts, are explored. Herein, four primary pathways for development of vacuum-processed OPDs are outlined: 1) ultraviolet-selective OPDs, 2) visible-light-selective OPDs, 3) near-infrared or short-wave-infrared-sensitive OPDs, and 4) addressing challenges such as higher noise currents compared to inorganic PDs. In this review, it is aimed to furnish readers with a comprehensive understanding of vacuum-processed OPDs, spanning from materials design to device engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信