大涡模拟气溶胶羽流传输和云响应的灵敏度

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Chandru Dhandapani, Colleen M. Kaul, Kyle G. Pressel, Peter N. Blossey, Robert Wood, Gourihar Kulkarni
{"title":"大涡模拟气溶胶羽流传输和云响应的灵敏度","authors":"Chandru Dhandapani,&nbsp;Colleen M. Kaul,&nbsp;Kyle G. Pressel,&nbsp;Peter N. Blossey,&nbsp;Robert Wood,&nbsp;Gourihar Kulkarni","doi":"10.1029/2024MS004546","DOIUrl":null,"url":null,"abstract":"<p>Cloud responses to surface-based sources of aerosol perturbation partially depend on how turbulent transport of the aerosol to cloud base affects the spatial and temporal distribution of aerosol. Here, scenarios of plume injection below a marine stratocumulus cloud are modeled using large eddy simulations coupled to a prognostic bulk aerosol and cloud microphysics scheme. Both passive plumes, consisting of an inert tracer, and active plumes are investigated, where the latter are representative of saltwater droplet plumes such as have been proposed for marine cloud brightening. Passive plume scenarios show higher in-plume cloud brightness (relative to out-of-plume) due to the predominant transport of the passive plume tracer from the near-surface to the cloud layer within updrafts. These updrafts rise into brighter areas within the cloud deck, even in the absence of an aerosol perturbation associated with an active plume. Comparing albedo at in-plume to out-of-plume locations associates the inert plume with the brightest cloud locations, without any causal effect of the plume on the cloud. Numerical sensitivities are first assessed to establish a suitable model configuration. Then sensitivity to particle injection rate is investigated. Trade-offs are identified between the number of injected particles and the suppressive effect of droplet evaporation on plume loft and spread. Furthermore, as the near-field in-plume brightening effect does not depend significantly on injection rate given a suitable definition of perturbed versus unperturbed regions of the flow, plume area is a key controlling factor on the overall cloud brightening effect of an aerosol perturbation.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004546","citationCount":"0","resultStr":"{\"title\":\"Sensitivities of Large Eddy Simulations of Aerosol Plume Transport and Cloud Response\",\"authors\":\"Chandru Dhandapani,&nbsp;Colleen M. Kaul,&nbsp;Kyle G. Pressel,&nbsp;Peter N. Blossey,&nbsp;Robert Wood,&nbsp;Gourihar Kulkarni\",\"doi\":\"10.1029/2024MS004546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cloud responses to surface-based sources of aerosol perturbation partially depend on how turbulent transport of the aerosol to cloud base affects the spatial and temporal distribution of aerosol. Here, scenarios of plume injection below a marine stratocumulus cloud are modeled using large eddy simulations coupled to a prognostic bulk aerosol and cloud microphysics scheme. Both passive plumes, consisting of an inert tracer, and active plumes are investigated, where the latter are representative of saltwater droplet plumes such as have been proposed for marine cloud brightening. Passive plume scenarios show higher in-plume cloud brightness (relative to out-of-plume) due to the predominant transport of the passive plume tracer from the near-surface to the cloud layer within updrafts. These updrafts rise into brighter areas within the cloud deck, even in the absence of an aerosol perturbation associated with an active plume. Comparing albedo at in-plume to out-of-plume locations associates the inert plume with the brightest cloud locations, without any causal effect of the plume on the cloud. Numerical sensitivities are first assessed to establish a suitable model configuration. Then sensitivity to particle injection rate is investigated. Trade-offs are identified between the number of injected particles and the suppressive effect of droplet evaporation on plume loft and spread. Furthermore, as the near-field in-plume brightening effect does not depend significantly on injection rate given a suitable definition of perturbed versus unperturbed regions of the flow, plume area is a key controlling factor on the overall cloud brightening effect of an aerosol perturbation.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004546\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004546\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004546","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

云对地面气溶胶扰动源的响应部分取决于气溶胶到云底的湍流输送如何影响气溶胶的时空分布。在这里,羽流注入海洋层积云下的情景使用大涡模拟与预测的大块气溶胶和云微物理方案相结合来模拟。研究了由惰性示踪剂组成的被动羽流和主动羽流,其中后者代表了盐水滴羽流,如被提议用于海洋云增亮。被动羽流情景显示出更高的羽内云亮度(相对于羽外云亮度),这是由于在上升气流中,被动羽流示踪物主要从近地表输送到云层。这些上升气流上升到云甲板内较亮的区域,即使在没有与活跃羽流相关的气溶胶扰动的情况下。比较烟羽内和烟羽外位置的反照率,将不活跃的烟羽与最亮的云位置联系起来,没有烟羽对云的任何因果影响。首先评估数值灵敏度以建立合适的模型配置。然后研究了对颗粒注入速度的敏感性。在注入颗粒的数量和液滴蒸发对羽流发散和扩散的抑制作用之间进行了权衡。此外,如果对气流的扰动区域和非扰动区域进行适当的定义,由于近场羽流增亮效果并不显著依赖于注入速率,因此羽流面积是气溶胶扰动的整体云增亮效果的关键控制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sensitivities of Large Eddy Simulations of Aerosol Plume Transport and Cloud Response

Sensitivities of Large Eddy Simulations of Aerosol Plume Transport and Cloud Response

Cloud responses to surface-based sources of aerosol perturbation partially depend on how turbulent transport of the aerosol to cloud base affects the spatial and temporal distribution of aerosol. Here, scenarios of plume injection below a marine stratocumulus cloud are modeled using large eddy simulations coupled to a prognostic bulk aerosol and cloud microphysics scheme. Both passive plumes, consisting of an inert tracer, and active plumes are investigated, where the latter are representative of saltwater droplet plumes such as have been proposed for marine cloud brightening. Passive plume scenarios show higher in-plume cloud brightness (relative to out-of-plume) due to the predominant transport of the passive plume tracer from the near-surface to the cloud layer within updrafts. These updrafts rise into brighter areas within the cloud deck, even in the absence of an aerosol perturbation associated with an active plume. Comparing albedo at in-plume to out-of-plume locations associates the inert plume with the brightest cloud locations, without any causal effect of the plume on the cloud. Numerical sensitivities are first assessed to establish a suitable model configuration. Then sensitivity to particle injection rate is investigated. Trade-offs are identified between the number of injected particles and the suppressive effect of droplet evaporation on plume loft and spread. Furthermore, as the near-field in-plume brightening effect does not depend significantly on injection rate given a suitable definition of perturbed versus unperturbed regions of the flow, plume area is a key controlling factor on the overall cloud brightening effect of an aerosol perturbation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信