{"title":"d维广义Pochhammer-Chree方程的Birkhoff范式与长时间存在性","authors":"Hongzi Cong, Siming Li, Yingte Sun, Xiaoqing Wu","doi":"10.1007/s10955-025-03409-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the proof of the long time existence results for the generalized Pochhammer–Chree equation on the irrational torus <span>\\(\\mathbb {T}^d_{\\eta }\\)</span> and the rational torus <span>\\(\\mathbb {T}^d_{\\zeta }\\)</span> by using Birkhoff normal form technique, the so-called <span>\\({ tame}\\)</span> property of the nonlinearity and a careful analysis of the frequency.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Birkhoff Normal Form and Long Time Existence for d-Dimensional Generalized Pochhammer–Chree Equation\",\"authors\":\"Hongzi Cong, Siming Li, Yingte Sun, Xiaoqing Wu\",\"doi\":\"10.1007/s10955-025-03409-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is devoted to the proof of the long time existence results for the generalized Pochhammer–Chree equation on the irrational torus <span>\\\\(\\\\mathbb {T}^d_{\\\\eta }\\\\)</span> and the rational torus <span>\\\\(\\\\mathbb {T}^d_{\\\\zeta }\\\\)</span> by using Birkhoff normal form technique, the so-called <span>\\\\({ tame}\\\\)</span> property of the nonlinearity and a careful analysis of the frequency.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03409-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03409-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Birkhoff Normal Form and Long Time Existence for d-Dimensional Generalized Pochhammer–Chree Equation
This paper is devoted to the proof of the long time existence results for the generalized Pochhammer–Chree equation on the irrational torus \(\mathbb {T}^d_{\eta }\) and the rational torus \(\mathbb {T}^d_{\zeta }\) by using Birkhoff normal form technique, the so-called \({ tame}\) property of the nonlinearity and a careful analysis of the frequency.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.