考虑能量传递的圆形管道中两个线性振子的索默菲尔德效应及同步特性

IF 4.4 3区 工程技术 Q1 ENGINEERING, CIVIL
Chen Chen, Xueliang Zhang, Wenchao Hu, Yudong Peng, Bangchun Wen
{"title":"考虑能量传递的圆形管道中两个线性振子的索默菲尔德效应及同步特性","authors":"Chen Chen,&nbsp;Xueliang Zhang,&nbsp;Wenchao Hu,&nbsp;Yudong Peng,&nbsp;Bangchun Wen","doi":"10.1007/s43452-025-01124-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to explore a system with two linear oscillators coupled in a circular pipeline and clarify the synchronous mechanism from the viewpoint of energy transfer. Considering the mass of the motor housing and stator, etc., this paper presents a continuous model of a pipeline system with concentrated mass and discretizes it using the Galerkin method under simply supported conditions. The synchronization criteria are then derived from the energy integration of the motion equations. The mutual comparison of the characteristic analysis and the numerical results verifies the effectiveness of the theoretical investigation in the present paper, and the system exhibits synchronous behavior in the non-resonant region. The Sommerfeld effect near the 1st-order resonance region is explored, and the minimum supplied power frequency threshold is found for the system to pass through the capture-jump behavior. Additionally, the influence of structural parameters such as pipeline internal diameter, oscillator mass, and excitation location on the synchronization behavior of the system is discussed. These results are expected to provide good support for understanding the synchronous behavior in pipelines and vibration utilization techniques in pipeline transportation.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sommerfeld effect and synchronization characteristics of two linear oscillators in a circular pipeline considering energy transfer\",\"authors\":\"Chen Chen,&nbsp;Xueliang Zhang,&nbsp;Wenchao Hu,&nbsp;Yudong Peng,&nbsp;Bangchun Wen\",\"doi\":\"10.1007/s43452-025-01124-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims to explore a system with two linear oscillators coupled in a circular pipeline and clarify the synchronous mechanism from the viewpoint of energy transfer. Considering the mass of the motor housing and stator, etc., this paper presents a continuous model of a pipeline system with concentrated mass and discretizes it using the Galerkin method under simply supported conditions. The synchronization criteria are then derived from the energy integration of the motion equations. The mutual comparison of the characteristic analysis and the numerical results verifies the effectiveness of the theoretical investigation in the present paper, and the system exhibits synchronous behavior in the non-resonant region. The Sommerfeld effect near the 1st-order resonance region is explored, and the minimum supplied power frequency threshold is found for the system to pass through the capture-jump behavior. Additionally, the influence of structural parameters such as pipeline internal diameter, oscillator mass, and excitation location on the synchronization behavior of the system is discussed. These results are expected to provide good support for understanding the synchronous behavior in pipelines and vibration utilization techniques in pipeline transportation.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-025-01124-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01124-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文从能量传递的角度探讨了一个由两个线性振子耦合在圆形管道中的系统,并阐明了其同步机理。考虑电机机壳、定子等的质量,建立了质量集中的管道系统的连续模型,并在简支条件下用伽辽金法对其进行离散化。然后从运动方程的能量积分推导出同步准则。特性分析与数值结果的相互比较验证了本文理论研究的有效性,系统在非谐振区表现出同步特性。研究了一阶谐振区附近的索默菲尔德效应,并找到了系统通过捕获跳变行为的最小供电频率阈值。此外,还讨论了管道内径、振子质量、激励位置等结构参数对系统同步性能的影响。这些结果有望为理解管道的同步特性和管道运输中的振动利用技术提供良好的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sommerfeld effect and synchronization characteristics of two linear oscillators in a circular pipeline considering energy transfer

This paper aims to explore a system with two linear oscillators coupled in a circular pipeline and clarify the synchronous mechanism from the viewpoint of energy transfer. Considering the mass of the motor housing and stator, etc., this paper presents a continuous model of a pipeline system with concentrated mass and discretizes it using the Galerkin method under simply supported conditions. The synchronization criteria are then derived from the energy integration of the motion equations. The mutual comparison of the characteristic analysis and the numerical results verifies the effectiveness of the theoretical investigation in the present paper, and the system exhibits synchronous behavior in the non-resonant region. The Sommerfeld effect near the 1st-order resonance region is explored, and the minimum supplied power frequency threshold is found for the system to pass through the capture-jump behavior. Additionally, the influence of structural parameters such as pipeline internal diameter, oscillator mass, and excitation location on the synchronization behavior of the system is discussed. These results are expected to provide good support for understanding the synchronous behavior in pipelines and vibration utilization techniques in pipeline transportation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Civil and Mechanical Engineering
Archives of Civil and Mechanical Engineering 工程技术-材料科学:综合
CiteScore
6.80
自引率
9.10%
发文量
201
审稿时长
4 months
期刊介绍: Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science. The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics. The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation. In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信