Ayman Ibrahim, Nahed El Mahallawy, Islam Elsebaee, Hebatullah Megahed, Galal Aboelasaad, Abdelalim El-Bediwy, Osama Dewedar
{"title":"研制了一种用于海水淡化的太阳能蒸馏装置:数值预测和性能验证","authors":"Ayman Ibrahim, Nahed El Mahallawy, Islam Elsebaee, Hebatullah Megahed, Galal Aboelasaad, Abdelalim El-Bediwy, Osama Dewedar","doi":"10.1007/s13201-025-02366-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the globe, there is a rise in water demand for agricultural, industrial, and domestic purposes. Single-basin solar stills (SBSS) have been a subject of research in various countries, particularly in regions with water scarcity or limited access to clean drinking water. In this work, SBSS for desalinating high-salinity water were developed, tested, and evaluated based on a developed numerical model using MATLAB R2021a program to predict the best productivity through the best selection of raw materials used to develop the SBSS. A four-inclined SBSS was fabricated and examined experimentally according to numerical model findings for best design parameters at Marsa Matrouh, 31° 21′ 10.44″N, 27°14′14.10″ E, Agricultural Station—Agricultural Research Center (ARC), Egypt. The hourly experimental results are compared with the numerical results. A good correlation between the numerical and the experimental results with variations in water, and glass temperatures of 9, and 18% respectively, and a variation in cumulative productivity by 11%. The results clearly showed that instantaneous productivity increases by decreasing water depth to 10 mm and using the SBSS unit partially insulated from the bottom of the basin. Adding insulation in front of the sides and back of tempered glass increases the shading area and decreases water temperature hence the cumulative productivity by 15%. The cumulative productivity reached 3 L for the SBSS unit partially insulated from the bottom of the basin with an area of 0.6 m<sup>2</sup> for only 12 h working system at a water depth of 10 mm.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02366-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Developed a solar still unit for saltwater desalination: numerical prediction and performance verification\",\"authors\":\"Ayman Ibrahim, Nahed El Mahallawy, Islam Elsebaee, Hebatullah Megahed, Galal Aboelasaad, Abdelalim El-Bediwy, Osama Dewedar\",\"doi\":\"10.1007/s13201-025-02366-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the globe, there is a rise in water demand for agricultural, industrial, and domestic purposes. Single-basin solar stills (SBSS) have been a subject of research in various countries, particularly in regions with water scarcity or limited access to clean drinking water. In this work, SBSS for desalinating high-salinity water were developed, tested, and evaluated based on a developed numerical model using MATLAB R2021a program to predict the best productivity through the best selection of raw materials used to develop the SBSS. A four-inclined SBSS was fabricated and examined experimentally according to numerical model findings for best design parameters at Marsa Matrouh, 31° 21′ 10.44″N, 27°14′14.10″ E, Agricultural Station—Agricultural Research Center (ARC), Egypt. The hourly experimental results are compared with the numerical results. A good correlation between the numerical and the experimental results with variations in water, and glass temperatures of 9, and 18% respectively, and a variation in cumulative productivity by 11%. The results clearly showed that instantaneous productivity increases by decreasing water depth to 10 mm and using the SBSS unit partially insulated from the bottom of the basin. Adding insulation in front of the sides and back of tempered glass increases the shading area and decreases water temperature hence the cumulative productivity by 15%. The cumulative productivity reached 3 L for the SBSS unit partially insulated from the bottom of the basin with an area of 0.6 m<sup>2</sup> for only 12 h working system at a water depth of 10 mm.</p></div>\",\"PeriodicalId\":8374,\"journal\":{\"name\":\"Applied Water Science\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13201-025-02366-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Water Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13201-025-02366-9\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02366-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Developed a solar still unit for saltwater desalination: numerical prediction and performance verification
In the globe, there is a rise in water demand for agricultural, industrial, and domestic purposes. Single-basin solar stills (SBSS) have been a subject of research in various countries, particularly in regions with water scarcity or limited access to clean drinking water. In this work, SBSS for desalinating high-salinity water were developed, tested, and evaluated based on a developed numerical model using MATLAB R2021a program to predict the best productivity through the best selection of raw materials used to develop the SBSS. A four-inclined SBSS was fabricated and examined experimentally according to numerical model findings for best design parameters at Marsa Matrouh, 31° 21′ 10.44″N, 27°14′14.10″ E, Agricultural Station—Agricultural Research Center (ARC), Egypt. The hourly experimental results are compared with the numerical results. A good correlation between the numerical and the experimental results with variations in water, and glass temperatures of 9, and 18% respectively, and a variation in cumulative productivity by 11%. The results clearly showed that instantaneous productivity increases by decreasing water depth to 10 mm and using the SBSS unit partially insulated from the bottom of the basin. Adding insulation in front of the sides and back of tempered glass increases the shading area and decreases water temperature hence the cumulative productivity by 15%. The cumulative productivity reached 3 L for the SBSS unit partially insulated from the bottom of the basin with an area of 0.6 m2 for only 12 h working system at a water depth of 10 mm.