分离重力的尾巴:四极尾巴在五阶及以上通过整数分区

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Alex Edison
{"title":"分离重力的尾巴:四极尾巴在五阶及以上通过整数分区","authors":"Alex Edison","doi":"10.1007/JHEP02(2025)016","DOIUrl":null,"url":null,"abstract":"<p>This work studies the systematic organization of higher-order gravitational quadrupole tails using generalized unitarity methods imported from the study of scattering amplitudes. The first major result is a constructive algorithm for generic arbitrary-order tail effective actions which links the structure of their loop integral basis expansion with integer partitions, and predicts that only a single new unitarity cut needs to be evaluated at each tail order with all other contributions given in terms of lower-loop data. The algorithm is employed to compute the tail-of-tail-of-tail-of-tail-of-tail (T<sup>5</sup>) contributions to the effective action and associated energy loss to gravitational waves. Validation of the new effective action and radiated energy is done through counterterm extraction and renormalization analysis, leading to complete agreement with known counterterms and renormalization flow equations.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)016.pdf","citationCount":"0","resultStr":"{\"title\":\"Parting gravity’s tail: quadrupole tails at fifth order and beyond via integer partitions\",\"authors\":\"Alex Edison\",\"doi\":\"10.1007/JHEP02(2025)016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work studies the systematic organization of higher-order gravitational quadrupole tails using generalized unitarity methods imported from the study of scattering amplitudes. The first major result is a constructive algorithm for generic arbitrary-order tail effective actions which links the structure of their loop integral basis expansion with integer partitions, and predicts that only a single new unitarity cut needs to be evaluated at each tail order with all other contributions given in terms of lower-loop data. The algorithm is employed to compute the tail-of-tail-of-tail-of-tail-of-tail (T<sup>5</sup>) contributions to the effective action and associated energy loss to gravitational waves. Validation of the new effective action and radiated energy is done through counterterm extraction and renormalization analysis, leading to complete agreement with known counterterms and renormalization flow equations.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)016.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP02(2025)016\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)016","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

本文采用引入散射振幅研究的广义统一方法,研究了高阶引力四极尾的系统组织。第一个主要结果是一般任意阶尾有效动作的建设性算法,该算法将其环积分基展开的结构与整数分区联系起来,并预测在每个尾阶上只需要评估一个新的统一切割,所有其他贡献都是根据低环数据给出的。该算法用于计算引力波的有效作用和相关能量损失的尾-尾-尾-尾(T5)贡献。通过反项提取和重整化分析,验证了新的有效作用和辐射能量,结果与已知的反项和重整化流动方程完全一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parting gravity’s tail: quadrupole tails at fifth order and beyond via integer partitions

This work studies the systematic organization of higher-order gravitational quadrupole tails using generalized unitarity methods imported from the study of scattering amplitudes. The first major result is a constructive algorithm for generic arbitrary-order tail effective actions which links the structure of their loop integral basis expansion with integer partitions, and predicts that only a single new unitarity cut needs to be evaluated at each tail order with all other contributions given in terms of lower-loop data. The algorithm is employed to compute the tail-of-tail-of-tail-of-tail-of-tail (T5) contributions to the effective action and associated energy loss to gravitational waves. Validation of the new effective action and radiated energy is done through counterterm extraction and renormalization analysis, leading to complete agreement with known counterterms and renormalization flow equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信