基于采样的剪枝知识蒸馏用于训练轻量级 RNN-T

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Sungsoo Kim;Dongjune Lee;Ju Yeon Kang;Myeonghun Jeong;Nam Soo Kim
{"title":"基于采样的剪枝知识蒸馏用于训练轻量级 RNN-T","authors":"Sungsoo Kim;Dongjune Lee;Ju Yeon Kang;Myeonghun Jeong;Nam Soo Kim","doi":"10.1109/LSP.2025.3528364","DOIUrl":null,"url":null,"abstract":"We present a novel training method for small-scale RNN-T models, widely used in real-world speech recognition applications. Despite efforts to scale down models for edge devices, the demand for even smaller and more compact speech recognition models persists to accommodate a broader range of devices. In this letter, we propose Sampling-based Pruned Knowledge Distillation (SP-KD) for training lightweight RNN-T models. In contrast to the conventional knowledge distillation techniques, the proposed method enables student models to distill knowledge from the distribution of teacher models, which is estimated by considering not only the best paths but also less likely paths. Additionally, we leverage pruning the output lattice of RNN-T to comprehensively transfer knowledge from teacher models to student models. Experimental results demonstrate that our proposed method outperforms the baseline in training tiny RNN-T models.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"631-635"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling-Based Pruned Knowledge Distillation for Training Lightweight RNN-T\",\"authors\":\"Sungsoo Kim;Dongjune Lee;Ju Yeon Kang;Myeonghun Jeong;Nam Soo Kim\",\"doi\":\"10.1109/LSP.2025.3528364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel training method for small-scale RNN-T models, widely used in real-world speech recognition applications. Despite efforts to scale down models for edge devices, the demand for even smaller and more compact speech recognition models persists to accommodate a broader range of devices. In this letter, we propose Sampling-based Pruned Knowledge Distillation (SP-KD) for training lightweight RNN-T models. In contrast to the conventional knowledge distillation techniques, the proposed method enables student models to distill knowledge from the distribution of teacher models, which is estimated by considering not only the best paths but also less likely paths. Additionally, we leverage pruning the output lattice of RNN-T to comprehensively transfer knowledge from teacher models to student models. Experimental results demonstrate that our proposed method outperforms the baseline in training tiny RNN-T models.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"631-635\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10838712/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10838712/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling-Based Pruned Knowledge Distillation for Training Lightweight RNN-T
We present a novel training method for small-scale RNN-T models, widely used in real-world speech recognition applications. Despite efforts to scale down models for edge devices, the demand for even smaller and more compact speech recognition models persists to accommodate a broader range of devices. In this letter, we propose Sampling-based Pruned Knowledge Distillation (SP-KD) for training lightweight RNN-T models. In contrast to the conventional knowledge distillation techniques, the proposed method enables student models to distill knowledge from the distribution of teacher models, which is estimated by considering not only the best paths but also less likely paths. Additionally, we leverage pruning the output lattice of RNN-T to comprehensively transfer knowledge from teacher models to student models. Experimental results demonstrate that our proposed method outperforms the baseline in training tiny RNN-T models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信