Sunder A. Khowaja;Parus Khuwaja;Kapal Dev;Keshav Singh;Xingwang Li;Nikolaos Bartzoudis;Ciprian R. Comsa
{"title":"Block Encryption LAyer (BELA): Zero-Trust Defense Against Model Inversion Attacks for Federated Learning in 5G/6G Systems","authors":"Sunder A. Khowaja;Parus Khuwaja;Kapal Dev;Keshav Singh;Xingwang Li;Nikolaos Bartzoudis;Ciprian R. Comsa","doi":"10.1109/OJCOMS.2025.3526768","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) paradigm has been very popular in the implementation of 5G and beyond communication systems as it provides necessary security for the users in terms of data. However, the FL paradigm is still vulnerable to model inversion attacks, which allow malicious attackers to reconstruct data by using the trained model gradients. Such attacks can be carried out using generative adversarial networks (GANs), generative models, or by backtracking the model gradients. A zero-trust mechanism involves securing access and interactions with model gradients under the principle of “never trust, always verify.” This proactive approach ensures that sensitive information, such as model gradients, is kept private, making it difficult for adversaries to infer the private details of the users. This paper proposes a zero-trust based Block Encryption LAyer (BELA) module that provides defense against the model inversion attacks in FL settings. The BELA module mimics the Batch normalization (BN) layer in the deep neural network architecture that considers the random sequence. The sequence and the parameters are private to each client, which helps in providing defense against the model inversion attacks. We also provide extensive theoretical analysis to show that the proposed module is integratable in a variety of deep neural network architectures. Our experimental analysis on four publicly available datasets and various network architectures show that the BELA module can increase the mean square error (MSE) up to 194% when a reconstruction attempt is performed by an adversary using existing state-of-the-art methods.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"807-819"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829858","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10829858/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Block Encryption LAyer (BELA): Zero-Trust Defense Against Model Inversion Attacks for Federated Learning in 5G/6G Systems
Federated Learning (FL) paradigm has been very popular in the implementation of 5G and beyond communication systems as it provides necessary security for the users in terms of data. However, the FL paradigm is still vulnerable to model inversion attacks, which allow malicious attackers to reconstruct data by using the trained model gradients. Such attacks can be carried out using generative adversarial networks (GANs), generative models, or by backtracking the model gradients. A zero-trust mechanism involves securing access and interactions with model gradients under the principle of “never trust, always verify.” This proactive approach ensures that sensitive information, such as model gradients, is kept private, making it difficult for adversaries to infer the private details of the users. This paper proposes a zero-trust based Block Encryption LAyer (BELA) module that provides defense against the model inversion attacks in FL settings. The BELA module mimics the Batch normalization (BN) layer in the deep neural network architecture that considers the random sequence. The sequence and the parameters are private to each client, which helps in providing defense against the model inversion attacks. We also provide extensive theoretical analysis to show that the proposed module is integratable in a variety of deep neural network architectures. Our experimental analysis on four publicly available datasets and various network architectures show that the BELA module can increase the mean square error (MSE) up to 194% when a reconstruction attempt is performed by an adversary using existing state-of-the-art methods.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.