IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hai Xie;Jun Yao;Wenwen He;Dong Yang;Sheng Gong;Linsheng Zhao
{"title":"Transient Stability Analysis and Improved Control Strategy of PMSG-based Grid-forming Wind Energy Conversion System Under Symmetrical Grid Fault","authors":"Hai Xie;Jun Yao;Wenwen He;Dong Yang;Sheng Gong;Linsheng Zhao","doi":"10.35833/MPCE.2024.000484","DOIUrl":null,"url":null,"abstract":"The transient synchronization characteristics and instability mechanism of the permanent magnet synchronous generator (PMSG)-based grid-forming wind energy conversion system (GFM-WECS) under symmetrical grid fault have received little attention to date. In this paper, considering the dynamics of DC-link voltage, the transient stability and an improved control strategy of PMSG-based GFM-WECS are studied in detail. Firstly, considering the dynamic interactions between the machine-side converter and the grid-side converter, the large-signal equivalent model of GFM-WECS is established. Furthermore, a novel Lyapunov function is derived to evaluate the transient stability margin and instability boundary of GFM-WECS during grid voltage sag. Additionally, the impacts of current-limitation control on the transient stability of GFM-WECS are revealed. Then, a stability evaluation index is proposed to evaluate the transient stability margin of GFM-WECS. Moreover, an improved control strategy is proposed to enhance the transient response characteristics and low voltage ride-through (LVRT) capability of GFM-WECS under symmetrical grid fault. Finally, simulations and experimental results are conducted to verify the effectiveness of the proposed control strategy.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"128-141"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10807807","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10807807/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于永磁同步发电机(PMSG)的并网型风能转换系统(GFM-WECS)在对称电网故障下的瞬态同步特性和不稳定性机制迄今鲜有人关注。本文考虑了直流侧电压的动态特性,详细研究了基于 PMSG 的并网型风能转换系统的暂态稳定性和改进控制策略。首先,考虑了机侧变流器和电网侧变流器之间的动态相互作用,建立了 GFM-WECS 的大信号等效模型。此外,还导出了一个新颖的 Lyapunov 函数,用于评估 GFM-WECS 在电网电压下陷期间的瞬态稳定裕度和不稳定边界。此外,还揭示了限流控制对 GFM-WECS 暂态稳定性的影响。然后,提出了评估 GFM-WECS 暂态稳定裕度的稳定性评价指标。此外,还提出了一种改进的控制策略,以提高 GFM-WECS 在对称电网故障下的暂态响应特性和低电压穿越(LVRT)能力。最后,通过仿真和实验结果验证了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient Stability Analysis and Improved Control Strategy of PMSG-based Grid-forming Wind Energy Conversion System Under Symmetrical Grid Fault
The transient synchronization characteristics and instability mechanism of the permanent magnet synchronous generator (PMSG)-based grid-forming wind energy conversion system (GFM-WECS) under symmetrical grid fault have received little attention to date. In this paper, considering the dynamics of DC-link voltage, the transient stability and an improved control strategy of PMSG-based GFM-WECS are studied in detail. Firstly, considering the dynamic interactions between the machine-side converter and the grid-side converter, the large-signal equivalent model of GFM-WECS is established. Furthermore, a novel Lyapunov function is derived to evaluate the transient stability margin and instability boundary of GFM-WECS during grid voltage sag. Additionally, the impacts of current-limitation control on the transient stability of GFM-WECS are revealed. Then, a stability evaluation index is proposed to evaluate the transient stability margin of GFM-WECS. Moreover, an improved control strategy is proposed to enhance the transient response characteristics and low voltage ride-through (LVRT) capability of GFM-WECS under symmetrical grid fault. Finally, simulations and experimental results are conducted to verify the effectiveness of the proposed control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信