通过适当正交分解实现 HTS 非绝缘线圈的实时电磁模拟

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Stefano Sorti;Lorenzo Balconi;Lucio Rossi;Carlo Santini;Marco Statera
{"title":"通过适当正交分解实现 HTS 非绝缘线圈的实时电磁模拟","authors":"Stefano Sorti;Lorenzo Balconi;Lucio Rossi;Carlo Santini;Marco Statera","doi":"10.1109/TASC.2025.3526741","DOIUrl":null,"url":null,"abstract":"Advanced automation tools are promising wide-range solutions for the various problems still affecting High-Temperature Superconducting (HTS) magnets, including Non-Insulated (NI) ones. However, they are not applicable if reliable models that can run in real-time are not available. This article discusses a preliminary solution for this. For this scope, we propose the construction of reduced-order models, derived from 3D physical-based models. A Volume Integral Formulation (VIM) is presented and reduced using a technique called Proper Orthogonal Decomposition (POD). VIM solves for currents in the conducting domains, relying on Biot-Savart for interactions between elements; meshing insulating domains, such as air, is thus not needed. POD is a reduction technique where the most relevant information is retrieved by processing the full-system response through factorizations such as Singular Value Decomposition. The reduced and full models are then compared, showing that the former offers accurate solutions with a fraction of the computation effort of the latter. Finally, some potential applications of this technique are briefly discussed.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Real-Time Electromagnetic Simulations of HTS Non-Insulated Coils Through Proper Orthogonal Decomposition\",\"authors\":\"Stefano Sorti;Lorenzo Balconi;Lucio Rossi;Carlo Santini;Marco Statera\",\"doi\":\"10.1109/TASC.2025.3526741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced automation tools are promising wide-range solutions for the various problems still affecting High-Temperature Superconducting (HTS) magnets, including Non-Insulated (NI) ones. However, they are not applicable if reliable models that can run in real-time are not available. This article discusses a preliminary solution for this. For this scope, we propose the construction of reduced-order models, derived from 3D physical-based models. A Volume Integral Formulation (VIM) is presented and reduced using a technique called Proper Orthogonal Decomposition (POD). VIM solves for currents in the conducting domains, relying on Biot-Savart for interactions between elements; meshing insulating domains, such as air, is thus not needed. POD is a reduction technique where the most relevant information is retrieved by processing the full-system response through factorizations such as Singular Value Decomposition. The reduced and full models are then compared, showing that the former offers accurate solutions with a fraction of the computation effort of the latter. Finally, some potential applications of this technique are briefly discussed.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"35 5\",\"pages\":\"1-5\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10830004/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10830004/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Real-Time Electromagnetic Simulations of HTS Non-Insulated Coils Through Proper Orthogonal Decomposition
Advanced automation tools are promising wide-range solutions for the various problems still affecting High-Temperature Superconducting (HTS) magnets, including Non-Insulated (NI) ones. However, they are not applicable if reliable models that can run in real-time are not available. This article discusses a preliminary solution for this. For this scope, we propose the construction of reduced-order models, derived from 3D physical-based models. A Volume Integral Formulation (VIM) is presented and reduced using a technique called Proper Orthogonal Decomposition (POD). VIM solves for currents in the conducting domains, relying on Biot-Savart for interactions between elements; meshing insulating domains, such as air, is thus not needed. POD is a reduction technique where the most relevant information is retrieved by processing the full-system response through factorizations such as Singular Value Decomposition. The reduced and full models are then compared, showing that the former offers accurate solutions with a fraction of the computation effort of the latter. Finally, some potential applications of this technique are briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信