Kate Waldert, Sandra Bittermann, Nina Martinović, Felix Schottroff, Henry Jäger
{"title":"Ohmic baking of wheat bread – effect of process parameters on physico-chemical quality attributes","authors":"Kate Waldert, Sandra Bittermann, Nina Martinović, Felix Schottroff, Henry Jäger","doi":"10.1016/j.jfoodeng.2025.112493","DOIUrl":null,"url":null,"abstract":"<div><div>The potential of ohmic baking as an energy-efficient alternative to conventional baking was investigated in wheat bread production, with a particular focus on bread quality parameters. The effects of specific power input (1–5 kW/kg) and various parallel plate treatment chamber configurations were evaluated regarding resulting physico-chemical parameters. Ohmic baking at high power inputs (5 kW/kg) reduced baking times by 98 % compared to conventional baking. Concerning product quality, however, lower power input levels (<span><math><mrow><mo>≤</mo></mrow></math></span> 3 kW/kg) revealed specific benefits in terms of a more uniform crumb structure and higher degrees of starch cooking. Treatment chambers with thick electrodes (<span><math><mrow><mo>≥</mo></mrow></math></span> 5 mm) and decreased product surface area were associated with treatment inhomogeneities that resulted in higher product losses and lower bread volume. The results underline the importance of power input and treatment chamber design as control tools for tailored ohmic baking concepts to attain specific product properties. The necessity for a subsequent holding time after the heating phase was ascertained to achieve product quality comparable to conventionally baked breads.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"392 ","pages":"Article 112493"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425000287","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Ohmic baking of wheat bread – effect of process parameters on physico-chemical quality attributes
The potential of ohmic baking as an energy-efficient alternative to conventional baking was investigated in wheat bread production, with a particular focus on bread quality parameters. The effects of specific power input (1–5 kW/kg) and various parallel plate treatment chamber configurations were evaluated regarding resulting physico-chemical parameters. Ohmic baking at high power inputs (5 kW/kg) reduced baking times by 98 % compared to conventional baking. Concerning product quality, however, lower power input levels ( 3 kW/kg) revealed specific benefits in terms of a more uniform crumb structure and higher degrees of starch cooking. Treatment chambers with thick electrodes ( 5 mm) and decreased product surface area were associated with treatment inhomogeneities that resulted in higher product losses and lower bread volume. The results underline the importance of power input and treatment chamber design as control tools for tailored ohmic baking concepts to attain specific product properties. The necessity for a subsequent holding time after the heating phase was ascertained to achieve product quality comparable to conventionally baked breads.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.