a-IGZO器件的新型源/漏接触结构:氧清除层金属-层间半导体(OSL MIS)方法

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Sungjoo Song , Jong-Hyun Kim , Jongyoun Park , Seung-Hwan Kim , Dongjin Ko , Hyejung Choi , Seiyon Kim , Hyun-Yong Yu
{"title":"a-IGZO器件的新型源/漏接触结构:氧清除层金属-层间半导体(OSL MIS)方法","authors":"Sungjoo Song ,&nbsp;Jong-Hyun Kim ,&nbsp;Jongyoun Park ,&nbsp;Seung-Hwan Kim ,&nbsp;Dongjin Ko ,&nbsp;Hyejung Choi ,&nbsp;Seiyon Kim ,&nbsp;Hyun-Yong Yu","doi":"10.1016/j.apsadv.2024.100676","DOIUrl":null,"url":null,"abstract":"<div><div>The engineering of Schottky barrier height (SBH) at source/drain (S/D) contacts is a crucial technology in the next generation nanoelectronics. Recently, amorphous indium gallium zinc oxide (a-IGZO) has gained prominence for its application to stackable 3-dimensional (3D) dynamic random-access memory (DRAM) due to its ultra-low off-current and low-temperature fabrication. However, a high contact resistance of a-IGZO still limits the device performance. Despite various attempts to address the high contact resistance issue, including the metal-interlayer-semiconductor (MIS) contact structure, a novel approach is needed. Here, we propose an oxygen-scavenger-layer MIS (OSL MIS) contact structure which employs oxygen areal density (OAD) modulated OSL as the interlayer. The OSL MIS has been shown to improve the contact resistance through three key effects. 1) The interlayer doping effect, 2) a diffusion of oxygen ions from a-IGZO to interlayer, generates shallow donors in a-IGZO, and 3) the movement of oxygen ion induces the interface dipole. With these effects, the effective SBH and a contact resistivity were reduced to 0.119 eV and 1.36E-5 Ω·cm<sup>2,</sup> respectively. The proposed OSL MIS contact structure of a-IGZO using OAD modulation technique, shows enormous potential in improving the performance of amorphous oxide semiconductor based advanced electronic devices.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100676"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel source/drain contact structure for a-IGZO devices: Oxygen-scavenger-layer metal-interlayer-semiconductor (OSL MIS) approach\",\"authors\":\"Sungjoo Song ,&nbsp;Jong-Hyun Kim ,&nbsp;Jongyoun Park ,&nbsp;Seung-Hwan Kim ,&nbsp;Dongjin Ko ,&nbsp;Hyejung Choi ,&nbsp;Seiyon Kim ,&nbsp;Hyun-Yong Yu\",\"doi\":\"10.1016/j.apsadv.2024.100676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The engineering of Schottky barrier height (SBH) at source/drain (S/D) contacts is a crucial technology in the next generation nanoelectronics. Recently, amorphous indium gallium zinc oxide (a-IGZO) has gained prominence for its application to stackable 3-dimensional (3D) dynamic random-access memory (DRAM) due to its ultra-low off-current and low-temperature fabrication. However, a high contact resistance of a-IGZO still limits the device performance. Despite various attempts to address the high contact resistance issue, including the metal-interlayer-semiconductor (MIS) contact structure, a novel approach is needed. Here, we propose an oxygen-scavenger-layer MIS (OSL MIS) contact structure which employs oxygen areal density (OAD) modulated OSL as the interlayer. The OSL MIS has been shown to improve the contact resistance through three key effects. 1) The interlayer doping effect, 2) a diffusion of oxygen ions from a-IGZO to interlayer, generates shallow donors in a-IGZO, and 3) the movement of oxygen ion induces the interface dipole. With these effects, the effective SBH and a contact resistivity were reduced to 0.119 eV and 1.36E-5 Ω·cm<sup>2,</sup> respectively. The proposed OSL MIS contact structure of a-IGZO using OAD modulation technique, shows enormous potential in improving the performance of amorphous oxide semiconductor based advanced electronic devices.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"25 \",\"pages\":\"Article 100676\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523924001041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924001041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

源/漏(S/D)触点处的肖特基势垒高度(SBH)工程是下一代纳米电子学的关键技术。近年来,非晶铟镓氧化锌(a-IGZO)因其超低关流和低温制造技术在可堆叠三维(3D)动态随机存取存储器(DRAM)中的应用而备受关注。然而,a- igzo的高接触电阻仍然限制了器件的性能。尽管有各种各样的尝试来解决高接触电阻问题,包括金属-层间半导体(MIS)接触结构,但需要一种新的方法。本文提出了一种氧清除层MIS (OSL MIS)接触结构,该结构采用氧面密度(OAD)调制的OSL作为中间层。OSL MIS通过三个关键效应改善了接触电阻。1)层间掺杂效应,2)氧离子从a- igzo向层间扩散,在a- igzo中产生浅给体,3)氧离子的运动诱导界面偶极子。受此影响,材料的有效体积比和接触电阻率分别降至0.119 eV和1.36E-5 Ω·cm2。本文提出的基于OAD调制技术的a-IGZO的OSL MIS接触结构,在提高非晶氧化物半导体为基础的先进电子器件的性能方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novel source/drain contact structure for a-IGZO devices: Oxygen-scavenger-layer metal-interlayer-semiconductor (OSL MIS) approach

Novel source/drain contact structure for a-IGZO devices: Oxygen-scavenger-layer metal-interlayer-semiconductor (OSL MIS) approach
The engineering of Schottky barrier height (SBH) at source/drain (S/D) contacts is a crucial technology in the next generation nanoelectronics. Recently, amorphous indium gallium zinc oxide (a-IGZO) has gained prominence for its application to stackable 3-dimensional (3D) dynamic random-access memory (DRAM) due to its ultra-low off-current and low-temperature fabrication. However, a high contact resistance of a-IGZO still limits the device performance. Despite various attempts to address the high contact resistance issue, including the metal-interlayer-semiconductor (MIS) contact structure, a novel approach is needed. Here, we propose an oxygen-scavenger-layer MIS (OSL MIS) contact structure which employs oxygen areal density (OAD) modulated OSL as the interlayer. The OSL MIS has been shown to improve the contact resistance through three key effects. 1) The interlayer doping effect, 2) a diffusion of oxygen ions from a-IGZO to interlayer, generates shallow donors in a-IGZO, and 3) the movement of oxygen ion induces the interface dipole. With these effects, the effective SBH and a contact resistivity were reduced to 0.119 eV and 1.36E-5 Ω·cm2, respectively. The proposed OSL MIS contact structure of a-IGZO using OAD modulation technique, shows enormous potential in improving the performance of amorphous oxide semiconductor based advanced electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信