聚合物封装气体基光电探测器寿命的提高

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Cem Odaci , Muhammad Shaukat Khan , Tutku Beduk , Manoj Jose , Marta Kisielewska , Umut Aydemir , Ali Roshanghias
{"title":"聚合物封装气体基光电探测器寿命的提高","authors":"Cem Odaci ,&nbsp;Muhammad Shaukat Khan ,&nbsp;Tutku Beduk ,&nbsp;Manoj Jose ,&nbsp;Marta Kisielewska ,&nbsp;Umut Aydemir ,&nbsp;Ali Roshanghias","doi":"10.1016/j.flatc.2024.100795","DOIUrl":null,"url":null,"abstract":"<div><div>Exhibiting excellent absorption in the UV–visible wavelength range makes layered gallium sulfide (GaS) semiconductor material a promising candidate for use in electronics and optoelectronics applications. Recently, a fully printed GaS-based photodetector has been proposed and fabricated, rendering a low-cost fabrication process in flexible electronics. However, the degradation of the semiconductor layer due to environmental conditions causes reliability issues and shortens their lifetime. Thus, in this study, an attempt has been made to encapsulate printed GaS-based photodetector using different polymers to hinder the degradation. It is demonstrated that encapsulating the printed GaS-based photodetector by utilizing the polymer-capping method with styrene co-polymers, Polystyrene-block-polyisoprene-block-polystyrene, highly hydrogenated poly(styrene)-block-poly(butadiene), partially hydrogenated poly(styrene)-block-poly(butadiene), increases the performance of the photodetector. The efficiency of the GaS-based photodetector printed on flexible polyethylene terephthalate (PET) substrate has reached up to 123 % in responsivity in 6 weeks after the polymer coating. Also, the device figure of merit, the detectivity value of the printed photodetector, has increased more than three times after the polymer coating compared to its as-deposited state. Meanwhile, it is observed that the fall and rise times of the printed GaS photodetector have remained constant. Based on these results attained in this study, it can be claimed that the polymer coating provides high performance and long stability in the printed GaS-based photodetectors on flexible substrates, which will pave the way for the further implementations of III-VI group layered semiconductor materials in electronics and optoelectronics applications.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"49 ","pages":"Article 100795"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The enhanced lifetime of printed GaS-based photodetectors with polymer encapsulation\",\"authors\":\"Cem Odaci ,&nbsp;Muhammad Shaukat Khan ,&nbsp;Tutku Beduk ,&nbsp;Manoj Jose ,&nbsp;Marta Kisielewska ,&nbsp;Umut Aydemir ,&nbsp;Ali Roshanghias\",\"doi\":\"10.1016/j.flatc.2024.100795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Exhibiting excellent absorption in the UV–visible wavelength range makes layered gallium sulfide (GaS) semiconductor material a promising candidate for use in electronics and optoelectronics applications. Recently, a fully printed GaS-based photodetector has been proposed and fabricated, rendering a low-cost fabrication process in flexible electronics. However, the degradation of the semiconductor layer due to environmental conditions causes reliability issues and shortens their lifetime. Thus, in this study, an attempt has been made to encapsulate printed GaS-based photodetector using different polymers to hinder the degradation. It is demonstrated that encapsulating the printed GaS-based photodetector by utilizing the polymer-capping method with styrene co-polymers, Polystyrene-block-polyisoprene-block-polystyrene, highly hydrogenated poly(styrene)-block-poly(butadiene), partially hydrogenated poly(styrene)-block-poly(butadiene), increases the performance of the photodetector. The efficiency of the GaS-based photodetector printed on flexible polyethylene terephthalate (PET) substrate has reached up to 123 % in responsivity in 6 weeks after the polymer coating. Also, the device figure of merit, the detectivity value of the printed photodetector, has increased more than three times after the polymer coating compared to its as-deposited state. Meanwhile, it is observed that the fall and rise times of the printed GaS photodetector have remained constant. Based on these results attained in this study, it can be claimed that the polymer coating provides high performance and long stability in the printed GaS-based photodetectors on flexible substrates, which will pave the way for the further implementations of III-VI group layered semiconductor materials in electronics and optoelectronics applications.</div></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"49 \",\"pages\":\"Article 100795\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724001892\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001892","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在紫外可见波长范围内表现出优异的吸收性能,使层状硫化镓(GaS)半导体材料成为电子学和光电子学应用的有前途的候选材料。最近,一种完全印刷的基于气体的光电探测器被提出并制造出来,为柔性电子领域提供了一种低成本的制造工艺。然而,由于环境条件导致半导体层的退化导致可靠性问题并缩短其使用寿命。因此,在本研究中,尝试使用不同的聚合物封装印刷的气体基光电探测器来阻止降解。结果表明,用苯乙烯共聚物、聚苯乙烯-嵌段-聚异戊二烯-嵌段-聚苯乙烯、高度氢化的聚苯乙烯-嵌段聚丁二烯、部分氢化的聚苯乙烯-嵌段聚丁二烯封装印刷的气基光电探测器,提高了光电探测器的性能。在柔性聚对苯二甲酸乙二醇酯(PET)衬底上印刷的气基光电探测器在聚合物涂层后6周内的响应率达到123%。此外,器件的优点值,即印刷光电探测器的探测值,在聚合物涂层后比其沉积状态增加了三倍以上。同时,观察到印刷的气体光电探测器的下降和上升时间保持不变。基于本研究获得的这些结果,可以声称聚合物涂层在柔性衬底上印刷的气体基光电探测器中提供了高性能和长稳定性,这将为进一步实现III-VI族层状半导体材料在电子和光电子应用中的应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The enhanced lifetime of printed GaS-based photodetectors with polymer encapsulation

The enhanced lifetime of printed GaS-based photodetectors with polymer encapsulation
Exhibiting excellent absorption in the UV–visible wavelength range makes layered gallium sulfide (GaS) semiconductor material a promising candidate for use in electronics and optoelectronics applications. Recently, a fully printed GaS-based photodetector has been proposed and fabricated, rendering a low-cost fabrication process in flexible electronics. However, the degradation of the semiconductor layer due to environmental conditions causes reliability issues and shortens their lifetime. Thus, in this study, an attempt has been made to encapsulate printed GaS-based photodetector using different polymers to hinder the degradation. It is demonstrated that encapsulating the printed GaS-based photodetector by utilizing the polymer-capping method with styrene co-polymers, Polystyrene-block-polyisoprene-block-polystyrene, highly hydrogenated poly(styrene)-block-poly(butadiene), partially hydrogenated poly(styrene)-block-poly(butadiene), increases the performance of the photodetector. The efficiency of the GaS-based photodetector printed on flexible polyethylene terephthalate (PET) substrate has reached up to 123 % in responsivity in 6 weeks after the polymer coating. Also, the device figure of merit, the detectivity value of the printed photodetector, has increased more than three times after the polymer coating compared to its as-deposited state. Meanwhile, it is observed that the fall and rise times of the printed GaS photodetector have remained constant. Based on these results attained in this study, it can be claimed that the polymer coating provides high performance and long stability in the printed GaS-based photodetectors on flexible substrates, which will pave the way for the further implementations of III-VI group layered semiconductor materials in electronics and optoelectronics applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信