IF 1.7 4区 材料科学 Q3 CRYSTALLOGRAPHY
Xiang Lv , Hangfei Li , Degong Ding , Xuegong Yu , Chuanhong Jin , Deren Yang
{"title":"Interfacial characterization of non-metal precipitates at grain boundaries in cast multicrystalline silicon crystals","authors":"Xiang Lv ,&nbsp;Hangfei Li ,&nbsp;Degong Ding ,&nbsp;Xuegong Yu ,&nbsp;Chuanhong Jin ,&nbsp;Deren Yang","doi":"10.1016/j.jcrysgro.2024.128042","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon carbide (SiC) and silicon nitride (Si<sub>3</sub>N<sub>4</sub>) are two major non-metal precipitates commonly found along grain boundaries (GBs) in cast multicrystalline silicon (mc-Si) crystals. SiC precipitates are known to cause significant leakage current, which can adversely affect the performance of solar cells. Although Si<sub>3</sub>N<sub>4</sub> itself is electrically inactive, it serves as a heterogeneous nucleation site for SiC, therefore indirectly compromising solar cell efficiency. Despite the impact, the interface structure and formation mechanisms of these precipitates at grain boundaries remain poorly understood. This study employs high-resolution transmission electron microscopy (HRTEM) to investigate the atomic-scale interface structures of SiC and Si<sub>3</sub>N<sub>4</sub> precipitates at GBs in mc-Si crystals. Results indicate that SiC primarily exists in the cubic phase (<span><math><mi>β</mi></math></span>-SiC), while Si<sub>3</sub>N<sub>4</sub> is predominantly in hexagonal phase (<span><math><mi>α</mi></math></span>-Si<sub>3</sub>N<sub>4</sub>). Two distinct interface structures, and consequently different strain states, are observed between the precipitate (<span><math><mi>β</mi></math></span>-SiC, <span><math><mi>α</mi></math></span>-Si<sub>3</sub>N<sub>4</sub>) and the Si matrix. The first type is an abrupt interface with a crystallographic relationship of <span><math><msub><mfenced><mn>100</mn></mfenced><mrow><mi>β</mi><mtext>-SiC</mtext></mrow></msub><mspace></mspace></math></span>//<span><math><msub><mfenced><mn>100</mn></mfenced><mtext>Si</mtext></msub></math></span> and a high strain band at the interface. In the second type, an intermediate phase is inserted between the <span><math><mi>β</mi></math></span>-SiC and Si interface, exhibiting a crystallographic relationship of <span><math><msub><mfenced><mn>011</mn></mfenced><mrow><mi>β</mi><mtext>-SiC</mtext></mrow></msub></math></span>//<span><math><msub><mfenced><mn>111</mn></mfenced><mtext>Si</mtext></msub></math></span> and a strain-free state. Similar intermediate areas are also identified in <span><math><mi>α</mi></math></span>-Si<sub>3</sub>N<sub>4</sub>/Si and <span><math><mi>α</mi></math></span>-Si<sub>3</sub>N<sub>4</sub>/<span><math><mi>β</mi></math></span>-SiC interfaces, with crystallographic relationship of <span><math><msub><mfenced><mn>001</mn></mfenced><mrow><mi>α</mi><mo>-</mo><msub><mi>Si</mi><mn>3</mn></msub><msub><mi>N</mi><mn>4</mn></msub></mrow></msub></math></span>//<span><math><msub><mfenced><mn>221</mn></mfenced><mtext>Si</mtext></msub></math></span> and <span><math><msub><mfenced><mn>010</mn></mfenced><mrow><mi>α</mi><msub><mtext>-Si</mtext><mtext>3</mtext></msub><msub><mtext>N</mtext><mn>4</mn></msub></mrow></msub></math></span>//<span><math><msub><mfenced><mn>111</mn></mfenced><mrow><mi>β</mi><mtext>-SiC</mtext></mrow></msub></math></span>, respectively. These intermediates regions significantly reduce associated interfacial strains. A hetero-epitaxial growth mechanism is proposed to explain the formation of SiC and Si<sub>3</sub>N<sub>4</sub> precipitates in mc-Si, driven by interfacial lattice mismatch induced stress that is greatly relieved by the presence of intermediate areas in between the phases. This research provides in-depth insights into the formation mechanism of these precipitates and potential avenues for their property tailoring.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"652 ","pages":"Article 128042"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824004792","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

碳化硅(SiC)和氮化硅(Si3N4)是铸造多晶硅(mc-Si)晶体晶界(GB)上常见的两种主要非金属沉淀物。众所周知,SiC沉淀物会导致大量漏电流,从而对太阳能电池的性能产生不利影响。虽然 Si3N4 本身不导电,但它是碳化硅的异质成核点,因此会间接影响太阳能电池的效率。尽管会产生影响,但人们对这些沉淀物在晶界的界面结构和形成机制仍然知之甚少。本研究采用高分辨率透射电子显微镜 (HRTEM) 来研究微晶硅晶体晶界处 SiC 和 Si3N4 沉淀的原子尺度界面结构。结果表明,SiC 主要以立方相(β-SiC)存在,而 Si3N4 则主要以六方相(α-Si3N4)存在。在沉淀物(β-SiC、α-Si3N4)和硅基体之间观察到两种不同的界面结构,因此也观察到不同的应变状态。第一种是突然出现的界面,其晶体学关系为 100β-SiC//100Si,界面上存在高应变带。在第二种类型中,β-SiC 和硅界面之间插入了一个中间相,其晶体学关系为 011β-SiC//111Si,处于无应变状态。在 α-Si3N4/Si 和 α-Si3N4/β-SiC 界面也发现了类似的中间区域,其晶体学关系分别为 001α-Si3N4//221Si 和 010α-Si3N4//111β-SiC。这些中间区域大大降低了相关的界面应变。该研究提出了一种异质外延生长机制,以解释在 mc-Si 中形成 SiC 和 Si3N4 沉淀的原因,即界面晶格失配引起的应力,而这一应力由于相间中间区域的存在而得到极大缓解。这项研究深入揭示了这些析出物的形成机理,以及调整其特性的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial characterization of non-metal precipitates at grain boundaries in cast multicrystalline silicon crystals
Silicon carbide (SiC) and silicon nitride (Si3N4) are two major non-metal precipitates commonly found along grain boundaries (GBs) in cast multicrystalline silicon (mc-Si) crystals. SiC precipitates are known to cause significant leakage current, which can adversely affect the performance of solar cells. Although Si3N4 itself is electrically inactive, it serves as a heterogeneous nucleation site for SiC, therefore indirectly compromising solar cell efficiency. Despite the impact, the interface structure and formation mechanisms of these precipitates at grain boundaries remain poorly understood. This study employs high-resolution transmission electron microscopy (HRTEM) to investigate the atomic-scale interface structures of SiC and Si3N4 precipitates at GBs in mc-Si crystals. Results indicate that SiC primarily exists in the cubic phase (β-SiC), while Si3N4 is predominantly in hexagonal phase (α-Si3N4). Two distinct interface structures, and consequently different strain states, are observed between the precipitate (β-SiC, α-Si3N4) and the Si matrix. The first type is an abrupt interface with a crystallographic relationship of 100β-SiC//100Si and a high strain band at the interface. In the second type, an intermediate phase is inserted between the β-SiC and Si interface, exhibiting a crystallographic relationship of 011β-SiC//111Si and a strain-free state. Similar intermediate areas are also identified in α-Si3N4/Si and α-Si3N4/β-SiC interfaces, with crystallographic relationship of 001α-Si3N4//221Si and 010α-Si3N4//111β-SiC, respectively. These intermediates regions significantly reduce associated interfacial strains. A hetero-epitaxial growth mechanism is proposed to explain the formation of SiC and Si3N4 precipitates in mc-Si, driven by interfacial lattice mismatch induced stress that is greatly relieved by the presence of intermediate areas in between the phases. This research provides in-depth insights into the formation mechanism of these precipitates and potential avenues for their property tailoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Crystal Growth
Journal of Crystal Growth 化学-晶体学
CiteScore
3.60
自引率
11.10%
发文量
373
审稿时长
65 days
期刊介绍: The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信