状态和输入约束线性系统的模型参考自适应控制

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Sudipta Chattopadhyay, Srikant Sukumar, Vivek Natarajan
{"title":"状态和输入约束线性系统的模型参考自适应控制","authors":"Sudipta Chattopadhyay,&nbsp;Srikant Sukumar,&nbsp;Vivek Natarajan","doi":"10.1016/j.ejcon.2025.101196","DOIUrl":null,"url":null,"abstract":"<div><div>State and input constraints are ubiquitous in all engineering systems and developing adaptive controllers for uncertain linear systems under pre-specified state and input constraints is a problem of fundamental interest. For uncertain linear systems, a computationally inexpensive control method is the model reference adaptive control (MRAC). Although MRAC controllers come with strong stability guarantees they do not guarantee system operation within the pre-defined state and input constraints. Several modifications of the MRAC framework have been proposed to address input constraints in uncertain linear systems. Considering the infeasibility of arbitrary reference trajectories, reference modification has been implemented in the case of input constraints in the literature. The resulting conditions on the reference and input signals are difficult to verify online. Similar results on state and input constraints together have also been proposed, albeit resulting in more complex and unverifiable conditions on the control. In this paper, we have developed a modified MRAC controller that can handle state and input constraints in uncertain linear systems. We have also provided easily verifiable conditions on the control and reference under which our stability results hold. Obtaining such a verifiable condition is crucial in practical implementations on safety–critical systems. A combination of reference modification and barrier Lyapunov methods in adaptive control are employed to arrive at these results.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"82 ","pages":"Article 101196"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model reference adaptive control for state and input constrained linear systems\",\"authors\":\"Sudipta Chattopadhyay,&nbsp;Srikant Sukumar,&nbsp;Vivek Natarajan\",\"doi\":\"10.1016/j.ejcon.2025.101196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>State and input constraints are ubiquitous in all engineering systems and developing adaptive controllers for uncertain linear systems under pre-specified state and input constraints is a problem of fundamental interest. For uncertain linear systems, a computationally inexpensive control method is the model reference adaptive control (MRAC). Although MRAC controllers come with strong stability guarantees they do not guarantee system operation within the pre-defined state and input constraints. Several modifications of the MRAC framework have been proposed to address input constraints in uncertain linear systems. Considering the infeasibility of arbitrary reference trajectories, reference modification has been implemented in the case of input constraints in the literature. The resulting conditions on the reference and input signals are difficult to verify online. Similar results on state and input constraints together have also been proposed, albeit resulting in more complex and unverifiable conditions on the control. In this paper, we have developed a modified MRAC controller that can handle state and input constraints in uncertain linear systems. We have also provided easily verifiable conditions on the control and reference under which our stability results hold. Obtaining such a verifiable condition is crucial in practical implementations on safety–critical systems. A combination of reference modification and barrier Lyapunov methods in adaptive control are employed to arrive at these results.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"82 \",\"pages\":\"Article 101196\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S094735802500024X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S094735802500024X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

状态和输入约束在所有工程系统中普遍存在,开发不确定线性系统在预先指定的状态和输入约束下的自适应控制器是一个基本的问题。对于不确定线性系统,一种计算成本低廉的控制方法是模型参考自适应控制(MRAC)。尽管MRAC控制器具有很强的稳定性保证,但它们不能保证系统在预定义的状态和输入约束下运行。为了解决不确定线性系统中的输入约束问题,提出了对MRAC框架的几种修改。考虑到任意参考轨迹的不可行性,文献中已经在输入约束的情况下实现了参考修正。参考信号和输入信号的结果条件很难在线验证。在状态约束和输入约束上也提出了类似的结果,尽管在控制上产生了更复杂和不可验证的条件。在本文中,我们开发了一种改进的MRAC控制器,它可以处理不确定线性系统的状态和输入约束。我们还提供了易于验证的控制和参考条件,在这些条件下我们的稳定性结果成立。在安全关键型系统的实际实现中,获得这样的可验证条件是至关重要的。结合参考修正和自适应控制中的屏障李雅普诺夫方法,得到了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model reference adaptive control for state and input constrained linear systems
State and input constraints are ubiquitous in all engineering systems and developing adaptive controllers for uncertain linear systems under pre-specified state and input constraints is a problem of fundamental interest. For uncertain linear systems, a computationally inexpensive control method is the model reference adaptive control (MRAC). Although MRAC controllers come with strong stability guarantees they do not guarantee system operation within the pre-defined state and input constraints. Several modifications of the MRAC framework have been proposed to address input constraints in uncertain linear systems. Considering the infeasibility of arbitrary reference trajectories, reference modification has been implemented in the case of input constraints in the literature. The resulting conditions on the reference and input signals are difficult to verify online. Similar results on state and input constraints together have also been proposed, albeit resulting in more complex and unverifiable conditions on the control. In this paper, we have developed a modified MRAC controller that can handle state and input constraints in uncertain linear systems. We have also provided easily verifiable conditions on the control and reference under which our stability results hold. Obtaining such a verifiable condition is crucial in practical implementations on safety–critical systems. A combination of reference modification and barrier Lyapunov methods in adaptive control are employed to arrive at these results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信