{"title":"状态和输入约束线性系统的模型参考自适应控制","authors":"Sudipta Chattopadhyay, Srikant Sukumar, Vivek Natarajan","doi":"10.1016/j.ejcon.2025.101196","DOIUrl":null,"url":null,"abstract":"<div><div>State and input constraints are ubiquitous in all engineering systems and developing adaptive controllers for uncertain linear systems under pre-specified state and input constraints is a problem of fundamental interest. For uncertain linear systems, a computationally inexpensive control method is the model reference adaptive control (MRAC). Although MRAC controllers come with strong stability guarantees they do not guarantee system operation within the pre-defined state and input constraints. Several modifications of the MRAC framework have been proposed to address input constraints in uncertain linear systems. Considering the infeasibility of arbitrary reference trajectories, reference modification has been implemented in the case of input constraints in the literature. The resulting conditions on the reference and input signals are difficult to verify online. Similar results on state and input constraints together have also been proposed, albeit resulting in more complex and unverifiable conditions on the control. In this paper, we have developed a modified MRAC controller that can handle state and input constraints in uncertain linear systems. We have also provided easily verifiable conditions on the control and reference under which our stability results hold. Obtaining such a verifiable condition is crucial in practical implementations on safety–critical systems. A combination of reference modification and barrier Lyapunov methods in adaptive control are employed to arrive at these results.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"82 ","pages":"Article 101196"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model reference adaptive control for state and input constrained linear systems\",\"authors\":\"Sudipta Chattopadhyay, Srikant Sukumar, Vivek Natarajan\",\"doi\":\"10.1016/j.ejcon.2025.101196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>State and input constraints are ubiquitous in all engineering systems and developing adaptive controllers for uncertain linear systems under pre-specified state and input constraints is a problem of fundamental interest. For uncertain linear systems, a computationally inexpensive control method is the model reference adaptive control (MRAC). Although MRAC controllers come with strong stability guarantees they do not guarantee system operation within the pre-defined state and input constraints. Several modifications of the MRAC framework have been proposed to address input constraints in uncertain linear systems. Considering the infeasibility of arbitrary reference trajectories, reference modification has been implemented in the case of input constraints in the literature. The resulting conditions on the reference and input signals are difficult to verify online. Similar results on state and input constraints together have also been proposed, albeit resulting in more complex and unverifiable conditions on the control. In this paper, we have developed a modified MRAC controller that can handle state and input constraints in uncertain linear systems. We have also provided easily verifiable conditions on the control and reference under which our stability results hold. Obtaining such a verifiable condition is crucial in practical implementations on safety–critical systems. A combination of reference modification and barrier Lyapunov methods in adaptive control are employed to arrive at these results.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"82 \",\"pages\":\"Article 101196\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S094735802500024X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S094735802500024X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Model reference adaptive control for state and input constrained linear systems
State and input constraints are ubiquitous in all engineering systems and developing adaptive controllers for uncertain linear systems under pre-specified state and input constraints is a problem of fundamental interest. For uncertain linear systems, a computationally inexpensive control method is the model reference adaptive control (MRAC). Although MRAC controllers come with strong stability guarantees they do not guarantee system operation within the pre-defined state and input constraints. Several modifications of the MRAC framework have been proposed to address input constraints in uncertain linear systems. Considering the infeasibility of arbitrary reference trajectories, reference modification has been implemented in the case of input constraints in the literature. The resulting conditions on the reference and input signals are difficult to verify online. Similar results on state and input constraints together have also been proposed, albeit resulting in more complex and unverifiable conditions on the control. In this paper, we have developed a modified MRAC controller that can handle state and input constraints in uncertain linear systems. We have also provided easily verifiable conditions on the control and reference under which our stability results hold. Obtaining such a verifiable condition is crucial in practical implementations on safety–critical systems. A combination of reference modification and barrier Lyapunov methods in adaptive control are employed to arrive at these results.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.