Xinkai Zhao , Xiaoyu Song , Danyang Wang , Lanjun Li , Pengfei Meng , Chong Fu , Long Wang , Wanyin Wei , Yu Liu , Huaiyou Li
{"title":"连续降雨条件下黄土坡农田不同微地形的水力侵蚀控制机制","authors":"Xinkai Zhao , Xiaoyu Song , Danyang Wang , Lanjun Li , Pengfei Meng , Chong Fu , Long Wang , Wanyin Wei , Yu Liu , Huaiyou Li","doi":"10.1016/j.catena.2024.108630","DOIUrl":null,"url":null,"abstract":"<div><div>Different microrelief patterns of sloped farmland have important effects on soil erosion. However, its hydraulic erosion control mechanism under continuous rainfall is unclear. In this study, the effects of two microrelief patterns (reservoir tillage (RT) and contour tillage (CT)) of sloped farmland on runoff, soil erosion, and hydrodynamic parameters were investigated at the plot scale using simulated rainfall and high-definition photography methods. Smooth slopes (SS) were chosen as a control. The test rainfall intensities (<em>RI</em>s) were selected as 30, 60, 90, and 120 mm h<sup>−1</sup>. Two continuous rainfall events, each lasting 40 min, were conducted on each type of slope. The results show that the different microrelief patterns have a twofold role in soil erosion on slopes as influenced by rainfall conditions. During the first rainfall, compared to SS, the RT and CT increased the Darcy–Weisbach coefficient and reduced the surface flow velocity. The RT and CT significantly increased the initial runoff time and reduced runoff yield (10.9–69.46 %) and sediment yield (9.87–74.87 %). However, during the second rainfall event, the water-retaining terrain of the RT and CT was destroyed. This resulted in reduced Darcy–Weisbach coefficients and increased flow velocities on the RT and CT. Compared to the SS, the RT reduced the runoff yield (10.59–63.86 %) and sediment yield (19.04–51.17 %) under <em>RI</em>s of 30, 60, and 90mm h<sup>−1</sup>, but the magnitude of reduction decreased compared to the first rainfall event. The RT increased the runoff yield (11.32 %) and sediment yield (6.08 %) under the <em>RI</em> of 120 mm h<sup>−1</sup>. The CT increased the runoff yield (19.13–24.88 %) and sediment yield (15.75–46.32 %) under all four <em>RI</em>s. In addition, statistical analysis indicated that stream power could explain 79 % of the changes in runoff and sediment yield on RT and CT, and effective stream power could account for 79 % of the variations in runoff and sediment yield on SS. Stream power served as the optimal indicator for characterizing the runoff and sediment yield rates on RT and CT, whereas effective stream power was the best metric for SS. This study can help us to better explain the mechanism of hydraulic erosion control in different microrelief patterns.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"249 ","pages":"Article 108630"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of hydraulic erosion control in different microrelief patterns of loess sloped farmland under continuous rainfall\",\"authors\":\"Xinkai Zhao , Xiaoyu Song , Danyang Wang , Lanjun Li , Pengfei Meng , Chong Fu , Long Wang , Wanyin Wei , Yu Liu , Huaiyou Li\",\"doi\":\"10.1016/j.catena.2024.108630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Different microrelief patterns of sloped farmland have important effects on soil erosion. However, its hydraulic erosion control mechanism under continuous rainfall is unclear. In this study, the effects of two microrelief patterns (reservoir tillage (RT) and contour tillage (CT)) of sloped farmland on runoff, soil erosion, and hydrodynamic parameters were investigated at the plot scale using simulated rainfall and high-definition photography methods. Smooth slopes (SS) were chosen as a control. The test rainfall intensities (<em>RI</em>s) were selected as 30, 60, 90, and 120 mm h<sup>−1</sup>. Two continuous rainfall events, each lasting 40 min, were conducted on each type of slope. The results show that the different microrelief patterns have a twofold role in soil erosion on slopes as influenced by rainfall conditions. During the first rainfall, compared to SS, the RT and CT increased the Darcy–Weisbach coefficient and reduced the surface flow velocity. The RT and CT significantly increased the initial runoff time and reduced runoff yield (10.9–69.46 %) and sediment yield (9.87–74.87 %). However, during the second rainfall event, the water-retaining terrain of the RT and CT was destroyed. This resulted in reduced Darcy–Weisbach coefficients and increased flow velocities on the RT and CT. Compared to the SS, the RT reduced the runoff yield (10.59–63.86 %) and sediment yield (19.04–51.17 %) under <em>RI</em>s of 30, 60, and 90mm h<sup>−1</sup>, but the magnitude of reduction decreased compared to the first rainfall event. The RT increased the runoff yield (11.32 %) and sediment yield (6.08 %) under the <em>RI</em> of 120 mm h<sup>−1</sup>. The CT increased the runoff yield (19.13–24.88 %) and sediment yield (15.75–46.32 %) under all four <em>RI</em>s. In addition, statistical analysis indicated that stream power could explain 79 % of the changes in runoff and sediment yield on RT and CT, and effective stream power could account for 79 % of the variations in runoff and sediment yield on SS. Stream power served as the optimal indicator for characterizing the runoff and sediment yield rates on RT and CT, whereas effective stream power was the best metric for SS. This study can help us to better explain the mechanism of hydraulic erosion control in different microrelief patterns.</div></div>\",\"PeriodicalId\":9801,\"journal\":{\"name\":\"Catena\",\"volume\":\"249 \",\"pages\":\"Article 108630\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catena\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0341816224008270\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224008270","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanisms of hydraulic erosion control in different microrelief patterns of loess sloped farmland under continuous rainfall
Different microrelief patterns of sloped farmland have important effects on soil erosion. However, its hydraulic erosion control mechanism under continuous rainfall is unclear. In this study, the effects of two microrelief patterns (reservoir tillage (RT) and contour tillage (CT)) of sloped farmland on runoff, soil erosion, and hydrodynamic parameters were investigated at the plot scale using simulated rainfall and high-definition photography methods. Smooth slopes (SS) were chosen as a control. The test rainfall intensities (RIs) were selected as 30, 60, 90, and 120 mm h−1. Two continuous rainfall events, each lasting 40 min, were conducted on each type of slope. The results show that the different microrelief patterns have a twofold role in soil erosion on slopes as influenced by rainfall conditions. During the first rainfall, compared to SS, the RT and CT increased the Darcy–Weisbach coefficient and reduced the surface flow velocity. The RT and CT significantly increased the initial runoff time and reduced runoff yield (10.9–69.46 %) and sediment yield (9.87–74.87 %). However, during the second rainfall event, the water-retaining terrain of the RT and CT was destroyed. This resulted in reduced Darcy–Weisbach coefficients and increased flow velocities on the RT and CT. Compared to the SS, the RT reduced the runoff yield (10.59–63.86 %) and sediment yield (19.04–51.17 %) under RIs of 30, 60, and 90mm h−1, but the magnitude of reduction decreased compared to the first rainfall event. The RT increased the runoff yield (11.32 %) and sediment yield (6.08 %) under the RI of 120 mm h−1. The CT increased the runoff yield (19.13–24.88 %) and sediment yield (15.75–46.32 %) under all four RIs. In addition, statistical analysis indicated that stream power could explain 79 % of the changes in runoff and sediment yield on RT and CT, and effective stream power could account for 79 % of the variations in runoff and sediment yield on SS. Stream power served as the optimal indicator for characterizing the runoff and sediment yield rates on RT and CT, whereas effective stream power was the best metric for SS. This study can help us to better explain the mechanism of hydraulic erosion control in different microrelief patterns.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.