Zahra Moshaver Shoja , Ali Bohluli Oskouei , Morteza Nazari-Heris
{"title":"考虑天然气/氢燃料补给和电动汽车充电站的基于风险的多能社区优化管理与基于p2x的矢量桥接系统集成","authors":"Zahra Moshaver Shoja , Ali Bohluli Oskouei , Morteza Nazari-Heris","doi":"10.1016/j.ref.2025.100680","DOIUrl":null,"url":null,"abstract":"<div><div>Growing environmental concerns have increased interest in renewable energy-powered natural gas/hydrogen refueling (NGHR) and electric charging (EC) stations, driving the adoption of advanced energy resources like power-to-X (P2X) technologies in energy systems. This paper introduces vector-bridging systems (VBSs). In this concept, P2X technologies coupled with energy storage form a bridge across multiple energy vectors, such as electricity, gas, heat, and hydrogen, to enhance flexibility in community-integrated energy systems (CIESs). We propose a risk-based optimal energy management framework that integrates P2X-based VBSs to optimize participation in multi-energy markets while meeting power, gas, heat, and hydrogen demands from NGHR and EC stations at minimum cost. An incentive-based integrated demand response (IDR) model is also incorporated to reduce daily operation costs for power and heat demands. To manage uncertainties, a hybrid multi-objective info-gap decision theory (MOIGDT)/stochastic programming approach is used, adapting to the nature and knowledge of uncertain parameters. The multi-objective problem is solved using the augmented ε-constraint method, with the best solution selected through fuzzy decision-making and the min-max approach. Numerical results demonstrate that the combined use of P2X-based VBSs and IDR lowers daily operating costs by up to 8.36% and reduces risk levels in short-term CIES scheduling by 11.3%, underscoring the effectiveness of VBSs in achieving cost-efficient, resilient energy management.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"53 ","pages":"Article 100680"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk-based optimal management of a multi-energy community integrated with P2X-based vector-bridging systems considering natural gas/hydrogen refueling and electric vehicle charging stations\",\"authors\":\"Zahra Moshaver Shoja , Ali Bohluli Oskouei , Morteza Nazari-Heris\",\"doi\":\"10.1016/j.ref.2025.100680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Growing environmental concerns have increased interest in renewable energy-powered natural gas/hydrogen refueling (NGHR) and electric charging (EC) stations, driving the adoption of advanced energy resources like power-to-X (P2X) technologies in energy systems. This paper introduces vector-bridging systems (VBSs). In this concept, P2X technologies coupled with energy storage form a bridge across multiple energy vectors, such as electricity, gas, heat, and hydrogen, to enhance flexibility in community-integrated energy systems (CIESs). We propose a risk-based optimal energy management framework that integrates P2X-based VBSs to optimize participation in multi-energy markets while meeting power, gas, heat, and hydrogen demands from NGHR and EC stations at minimum cost. An incentive-based integrated demand response (IDR) model is also incorporated to reduce daily operation costs for power and heat demands. To manage uncertainties, a hybrid multi-objective info-gap decision theory (MOIGDT)/stochastic programming approach is used, adapting to the nature and knowledge of uncertain parameters. The multi-objective problem is solved using the augmented ε-constraint method, with the best solution selected through fuzzy decision-making and the min-max approach. Numerical results demonstrate that the combined use of P2X-based VBSs and IDR lowers daily operating costs by up to 8.36% and reduces risk levels in short-term CIES scheduling by 11.3%, underscoring the effectiveness of VBSs in achieving cost-efficient, resilient energy management.</div></div>\",\"PeriodicalId\":29780,\"journal\":{\"name\":\"Renewable Energy Focus\",\"volume\":\"53 \",\"pages\":\"Article 100680\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175500842500002X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175500842500002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Risk-based optimal management of a multi-energy community integrated with P2X-based vector-bridging systems considering natural gas/hydrogen refueling and electric vehicle charging stations
Growing environmental concerns have increased interest in renewable energy-powered natural gas/hydrogen refueling (NGHR) and electric charging (EC) stations, driving the adoption of advanced energy resources like power-to-X (P2X) technologies in energy systems. This paper introduces vector-bridging systems (VBSs). In this concept, P2X technologies coupled with energy storage form a bridge across multiple energy vectors, such as electricity, gas, heat, and hydrogen, to enhance flexibility in community-integrated energy systems (CIESs). We propose a risk-based optimal energy management framework that integrates P2X-based VBSs to optimize participation in multi-energy markets while meeting power, gas, heat, and hydrogen demands from NGHR and EC stations at minimum cost. An incentive-based integrated demand response (IDR) model is also incorporated to reduce daily operation costs for power and heat demands. To manage uncertainties, a hybrid multi-objective info-gap decision theory (MOIGDT)/stochastic programming approach is used, adapting to the nature and knowledge of uncertain parameters. The multi-objective problem is solved using the augmented ε-constraint method, with the best solution selected through fuzzy decision-making and the min-max approach. Numerical results demonstrate that the combined use of P2X-based VBSs and IDR lowers daily operating costs by up to 8.36% and reduces risk levels in short-term CIES scheduling by 11.3%, underscoring the effectiveness of VBSs in achieving cost-efficient, resilient energy management.