高斯混合模型不确定性下需求响应和伏特/变量的机会约束共同优化

IF 4.2 Q2 ENERGY & FUELS
Soroush Najafi, Hanif Livani
{"title":"高斯混合模型不确定性下需求响应和伏特/变量的机会约束共同优化","authors":"Soroush Najafi,&nbsp;Hanif Livani","doi":"10.1016/j.ref.2024.100674","DOIUrl":null,"url":null,"abstract":"<div><div>Managing voltage and active load in distribution networks is an increasingly challenging task with the integration of volatile distributed energy resources (DERs) and flexible demands. This paper proposes a two-stage chance-constrained co-optimization framework using a Gaussian mixture model (GMM) to address Volt-VAR optimization (VVO) and demand response programs (DRP). The utilization of GMM in chance constrained optimization CCO (GMM-CCO) approach handles non-Gaussian forecast errors, ensuring network resilience with manageable computational demands. In the first stage, flexible demands, inverters’ reactive power, capacitor bank switching, and battery states of charge are co-scheduled, focusing on minimizing energy loss, reducing grid operational costs, and managing voltage deviations over a four-hour ahead schedule with hourly intervals. The second stage involves intra-hour, near-real-time optimization for VVO to respond to real-time disturbances. Simulations on a modified unbalanced three-phase IEEE 37-node system validate the framework’s effectiveness, comparing it to traditional chance-constrained optimization methods. Additionally, the proposed framework is implemented on the IEEE 69-node system to analyze its scalability and robustness under different levels of uncertainty and varying penetration levels.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"53 ","pages":"Article 100674"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chance-constrained co-optimization of demand response and Volt/Var under Gaussian mixture model uncertainty\",\"authors\":\"Soroush Najafi,&nbsp;Hanif Livani\",\"doi\":\"10.1016/j.ref.2024.100674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Managing voltage and active load in distribution networks is an increasingly challenging task with the integration of volatile distributed energy resources (DERs) and flexible demands. This paper proposes a two-stage chance-constrained co-optimization framework using a Gaussian mixture model (GMM) to address Volt-VAR optimization (VVO) and demand response programs (DRP). The utilization of GMM in chance constrained optimization CCO (GMM-CCO) approach handles non-Gaussian forecast errors, ensuring network resilience with manageable computational demands. In the first stage, flexible demands, inverters’ reactive power, capacitor bank switching, and battery states of charge are co-scheduled, focusing on minimizing energy loss, reducing grid operational costs, and managing voltage deviations over a four-hour ahead schedule with hourly intervals. The second stage involves intra-hour, near-real-time optimization for VVO to respond to real-time disturbances. Simulations on a modified unbalanced three-phase IEEE 37-node system validate the framework’s effectiveness, comparing it to traditional chance-constrained optimization methods. Additionally, the proposed framework is implemented on the IEEE 69-node system to analyze its scalability and robustness under different levels of uncertainty and varying penetration levels.</div></div>\",\"PeriodicalId\":29780,\"journal\":{\"name\":\"Renewable Energy Focus\",\"volume\":\"53 \",\"pages\":\"Article 100674\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755008424001388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008424001388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着波动性分布式能源资源(DER)和灵活需求的整合,配电网络中的电压和有功负载管理日益成为一项具有挑战性的任务。本文利用高斯混合模型 (GMM) 提出了一个两阶段机会约束协同优化框架,以解决电压-伏安特性优化 (VVO) 和需求响应计划 (DRP) 问题。在机会受限优化 CCO(GMM-CCO)方法中使用 GMM 可处理非高斯预测误差,从而在可管理的计算需求下确保网络弹性。在第一阶段,对灵活需求、逆变器无功功率、电容器组开关和电池充电状态进行共同调度,重点是最大限度地减少能源损耗、降低电网运营成本,以及管理以小时为间隔的四小时提前调度的电压偏差。第二阶段涉及 VVO 的小时内近实时优化,以应对实时干扰。在经过修改的不平衡三相 IEEE 37 节点系统上进行的仿真验证了该框架的有效性,并将其与传统的机会约束优化方法进行了比较。此外,还在 IEEE 69 节点系统上实施了建议的框架,以分析其在不同不确定性水平和不同渗透水平下的可扩展性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chance-constrained co-optimization of demand response and Volt/Var under Gaussian mixture model uncertainty
Managing voltage and active load in distribution networks is an increasingly challenging task with the integration of volatile distributed energy resources (DERs) and flexible demands. This paper proposes a two-stage chance-constrained co-optimization framework using a Gaussian mixture model (GMM) to address Volt-VAR optimization (VVO) and demand response programs (DRP). The utilization of GMM in chance constrained optimization CCO (GMM-CCO) approach handles non-Gaussian forecast errors, ensuring network resilience with manageable computational demands. In the first stage, flexible demands, inverters’ reactive power, capacitor bank switching, and battery states of charge are co-scheduled, focusing on minimizing energy loss, reducing grid operational costs, and managing voltage deviations over a four-hour ahead schedule with hourly intervals. The second stage involves intra-hour, near-real-time optimization for VVO to respond to real-time disturbances. Simulations on a modified unbalanced three-phase IEEE 37-node system validate the framework’s effectiveness, comparing it to traditional chance-constrained optimization methods. Additionally, the proposed framework is implemented on the IEEE 69-node system to analyze its scalability and robustness under different levels of uncertainty and varying penetration levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信