大型望远镜照相机光学校准系统的测试结果

IF 4.2 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
M. Iori, F. Ferrarotto, L. Recchia, A. Girardi, R. Lunadei
{"title":"大型望远镜照相机光学校准系统的测试结果","authors":"M. Iori,&nbsp;F. Ferrarotto,&nbsp;L. Recchia,&nbsp;A. Girardi,&nbsp;R. Lunadei","doi":"10.1016/j.astropartphys.2025.103079","DOIUrl":null,"url":null,"abstract":"<div><div>In 2018 the Large Sized Telescope (LST-1) prototype, designed to be the lowest energy detector for the Cherenkov Telescope Array Observatory, was inaugurated at the Observatorio de Roque de Los Muchachos in La Palma, Canary Island and today three more are under construction, LST2-4. The LST camera, with 1855 photomultipliers (PMTs), requires precise and regular calibration. The camera calibration system (hereafter CaliBox), installed at the center of the telescope mirror dish, is equipped with a Q-switching 355 nm UV laser corresponding to the wavelength at which the maximum camera PMT quantum efficiency is achieved, a set of filters to guarantee a large dynamic range of photons on each camera pixel, and a Ulbricht sphere to spread uniformly the laser light over the camera plane 28 m away. The system is managed by an ODROID-C1+ single board computer that communicates through an Open Platform Communication Unified Architecture (OPCUA) protocol to the camera. The CaliBox is designed to fulfill the requirements needed for the calibration of the camera including the monitor of the photon flux to guarantee the quality of the CaliBox system of laser stability, uniform illumination and intensity range. In this paper, we present in detail the optical system, the monitor of the photon flux, the relevant electronic to monitor the device. The performance of the device, the photon flux monitoring, the evaluation of the photon flux sent to the camera obtained during tests performed in laboratory are shown.</div></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"167 ","pages":"Article 103079"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test results of the optical calibration system for the Large Sized Telescope camera\",\"authors\":\"M. Iori,&nbsp;F. Ferrarotto,&nbsp;L. Recchia,&nbsp;A. Girardi,&nbsp;R. Lunadei\",\"doi\":\"10.1016/j.astropartphys.2025.103079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 2018 the Large Sized Telescope (LST-1) prototype, designed to be the lowest energy detector for the Cherenkov Telescope Array Observatory, was inaugurated at the Observatorio de Roque de Los Muchachos in La Palma, Canary Island and today three more are under construction, LST2-4. The LST camera, with 1855 photomultipliers (PMTs), requires precise and regular calibration. The camera calibration system (hereafter CaliBox), installed at the center of the telescope mirror dish, is equipped with a Q-switching 355 nm UV laser corresponding to the wavelength at which the maximum camera PMT quantum efficiency is achieved, a set of filters to guarantee a large dynamic range of photons on each camera pixel, and a Ulbricht sphere to spread uniformly the laser light over the camera plane 28 m away. The system is managed by an ODROID-C1+ single board computer that communicates through an Open Platform Communication Unified Architecture (OPCUA) protocol to the camera. The CaliBox is designed to fulfill the requirements needed for the calibration of the camera including the monitor of the photon flux to guarantee the quality of the CaliBox system of laser stability, uniform illumination and intensity range. In this paper, we present in detail the optical system, the monitor of the photon flux, the relevant electronic to monitor the device. The performance of the device, the photon flux monitoring, the evaluation of the photon flux sent to the camera obtained during tests performed in laboratory are shown.</div></div>\",\"PeriodicalId\":55439,\"journal\":{\"name\":\"Astroparticle Physics\",\"volume\":\"167 \",\"pages\":\"Article 103079\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927650525000027\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650525000027","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test results of the optical calibration system for the Large Sized Telescope camera
In 2018 the Large Sized Telescope (LST-1) prototype, designed to be the lowest energy detector for the Cherenkov Telescope Array Observatory, was inaugurated at the Observatorio de Roque de Los Muchachos in La Palma, Canary Island and today three more are under construction, LST2-4. The LST camera, with 1855 photomultipliers (PMTs), requires precise and regular calibration. The camera calibration system (hereafter CaliBox), installed at the center of the telescope mirror dish, is equipped with a Q-switching 355 nm UV laser corresponding to the wavelength at which the maximum camera PMT quantum efficiency is achieved, a set of filters to guarantee a large dynamic range of photons on each camera pixel, and a Ulbricht sphere to spread uniformly the laser light over the camera plane 28 m away. The system is managed by an ODROID-C1+ single board computer that communicates through an Open Platform Communication Unified Architecture (OPCUA) protocol to the camera. The CaliBox is designed to fulfill the requirements needed for the calibration of the camera including the monitor of the photon flux to guarantee the quality of the CaliBox system of laser stability, uniform illumination and intensity range. In this paper, we present in detail the optical system, the monitor of the photon flux, the relevant electronic to monitor the device. The performance of the device, the photon flux monitoring, the evaluation of the photon flux sent to the camera obtained during tests performed in laboratory are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astroparticle Physics
Astroparticle Physics 地学天文-天文与天体物理
CiteScore
8.00
自引率
2.90%
发文量
41
审稿时长
79 days
期刊介绍: Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信