IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Linlin Cui , Junjun Wang , Xueling Wu , Jiaokun Li , Weimin Zeng , Guanzhou Qiu , Li Shen
{"title":"Study on strengthened the Cd(II) adsorption based on co-culture of fungi and cyanobacteria","authors":"Linlin Cui ,&nbsp;Junjun Wang ,&nbsp;Xueling Wu ,&nbsp;Jiaokun Li ,&nbsp;Weimin Zeng ,&nbsp;Guanzhou Qiu ,&nbsp;Li Shen","doi":"10.1016/j.algal.2024.103823","DOIUrl":null,"url":null,"abstract":"<div><div>Cyanobacteria are effective in the remediation of heavy metal-contaminated water, but their application is limited by the high-cost of harvesting. In this study, the growth conditions of various fungi after co-cultured with cyanobacteria were compared, and the optimal fungal–cyanobacterial symbiotic system (FCSS) was selected to investigate the behaviour and mechanism of Cd(II) adsorption. Over 95 % of <em>Synechocystis</em> sp. PCC6803 was harvested by <em>Aspergillus allahabdii</em>. The FCSS adsorbed 39.10 mg/g of Cd(II), which was 22.20 % higher than the cyanobacterial single-culture system. Adsorption of Cd(II) in FCSS was rapid and monolayered. Cd was entrapped and formed irregular crystal precipitates on the surfaces of FCSS cells. Detoxification of Cd occurred through various mechanisms, with the C<img>O, –OH, and –COOH functional groups participating in adsorption. Real-time polymerase chain reaction and transcriptome analysis revealed that reactive oxygen species generated by Cd exposure were scavenged by antioxidant enzymes such as superoxide dismutase (SOD), nicotinamide adenine dinucleotide phosphate (NADPH), catalase (CAT) and glutathione S-transferase (GST), reducing the toxic effects. CAT and GST were the initial key players in the antioxidant response to Cd exposure, followed by SOD, while NADPH levels increased steadily. The gene expression trends of CAT, GST, and major facilitator superfamily transporters aligned with the adsorption performance. These findings provide new insights into the remediation of Cd-contaminated wastewater.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"85 ","pages":"Article 103823"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424004351","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蓝藻对重金属污染水体的修复非常有效,但其应用却因采收成本高昂而受到限制。本研究比较了各种真菌与蓝藻共培养后的生长条件,并选择了最佳的真菌-蓝藻共生系统(FCSS)来研究其吸附 Cd(II) 的行为和机制。95% 以上的 Synechocystis sp.FCSS对镉(II)的吸附量为39.10 mg/g,比蓝藻单一培养系统高出22.20%。FCSS 对镉(II)的吸附是快速和单层的。镉被夹带并在 FCSS 细胞表面形成不规则的晶体沉淀。镉的解毒作用有多种机制,CO、-OH 和 -COOH 官能团参与了吸附作用。实时聚合酶链反应和转录组分析表明,镉暴露产生的活性氧被超氧化物歧化酶(SOD)、烟酰胺腺嘌呤二核苷酸磷酸酯(NADPH)、过氧化氢酶(CAT)和谷胱甘肽 S-转移酶(GST)等抗氧化酶清除,从而降低了毒性效应。在镉暴露的抗氧化反应中,CAT 和谷胱甘肽 S 转移酶是最初的关键角色,其次是 SOD,而 NADPH 水平则稳步上升。CAT、GST和主要促进剂超家族转运体的基因表达趋势与吸附性能一致。这些发现为镉污染废水的修复提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on strengthened the Cd(II) adsorption based on co-culture of fungi and cyanobacteria

Study on strengthened the Cd(II) adsorption based on co-culture of fungi and cyanobacteria
Cyanobacteria are effective in the remediation of heavy metal-contaminated water, but their application is limited by the high-cost of harvesting. In this study, the growth conditions of various fungi after co-cultured with cyanobacteria were compared, and the optimal fungal–cyanobacterial symbiotic system (FCSS) was selected to investigate the behaviour and mechanism of Cd(II) adsorption. Over 95 % of Synechocystis sp. PCC6803 was harvested by Aspergillus allahabdii. The FCSS adsorbed 39.10 mg/g of Cd(II), which was 22.20 % higher than the cyanobacterial single-culture system. Adsorption of Cd(II) in FCSS was rapid and monolayered. Cd was entrapped and formed irregular crystal precipitates on the surfaces of FCSS cells. Detoxification of Cd occurred through various mechanisms, with the CO, –OH, and –COOH functional groups participating in adsorption. Real-time polymerase chain reaction and transcriptome analysis revealed that reactive oxygen species generated by Cd exposure were scavenged by antioxidant enzymes such as superoxide dismutase (SOD), nicotinamide adenine dinucleotide phosphate (NADPH), catalase (CAT) and glutathione S-transferase (GST), reducing the toxic effects. CAT and GST were the initial key players in the antioxidant response to Cd exposure, followed by SOD, while NADPH levels increased steadily. The gene expression trends of CAT, GST, and major facilitator superfamily transporters aligned with the adsorption performance. These findings provide new insights into the remediation of Cd-contaminated wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信