{"title":"具有密度抑制运动和间接信号消耗的趋化系统中的Logistic阻尼效应","authors":"Quanyong Zhao, Jinrong Wang","doi":"10.1016/j.nonrwa.2024.104314","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the following chemotaxis model <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mrow><mo>(</mo><mi>φ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mi>w</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>δ</mi><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> with smooth boundary, where the parameters <span><math><mi>δ</mi></math></span>, <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>∈</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><mi>l</mi><mo>></mo><mn>1</mn></mrow></math></span>. The positive motility function satisfies <span><math><mrow><mi>φ</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, and the purpose of this paper is to weaken the restriction on <span><math><mi>l</mi></math></span> which ensures the existence of global bounded solutions Li et al. (2022). It was shown that when <span><math><mrow><mi>n</mi><mo>≤</mo><mn>3</mn></mrow></math></span>, there exists a global bounded classical solution for all <span><math><mrow><mi>l</mi><mo>></mo><mn>1</mn></mrow></math></span>. When <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, then we concluded that the system admits a global bounded classical solution for all <span><math><mrow><mi>l</mi><mo>></mo><mn>2</mn></mrow></math></span>, and that the sufficiently large <span><math><mi>μ</mi></math></span> can ensure the existence of global bounded solutions if <span><math><mrow><mi>l</mi><mo>=</mo><mn>2</mn></mrow></math></span>. Moreover, we also studied the large time behavior of solutions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104314"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logistic damping effect in a chemotaxis system with density-suppressed motility and indirect signal consumption\",\"authors\":\"Quanyong Zhao, Jinrong Wang\",\"doi\":\"10.1016/j.nonrwa.2024.104314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the following chemotaxis model <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mrow><mo>(</mo><mi>φ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mi>w</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>δ</mi><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> with smooth boundary, where the parameters <span><math><mi>δ</mi></math></span>, <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>∈</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><mi>l</mi><mo>></mo><mn>1</mn></mrow></math></span>. The positive motility function satisfies <span><math><mrow><mi>φ</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, and the purpose of this paper is to weaken the restriction on <span><math><mi>l</mi></math></span> which ensures the existence of global bounded solutions Li et al. (2022). It was shown that when <span><math><mrow><mi>n</mi><mo>≤</mo><mn>3</mn></mrow></math></span>, there exists a global bounded classical solution for all <span><math><mrow><mi>l</mi><mo>></mo><mn>1</mn></mrow></math></span>. When <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, then we concluded that the system admits a global bounded classical solution for all <span><math><mrow><mi>l</mi><mo>></mo><mn>2</mn></mrow></math></span>, and that the sufficiently large <span><math><mi>μ</mi></math></span> can ensure the existence of global bounded solutions if <span><math><mrow><mi>l</mi><mo>=</mo><mn>2</mn></mrow></math></span>. Moreover, we also studied the large time behavior of solutions.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"84 \",\"pages\":\"Article 104314\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824002530\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002530","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了有界域Ω∧Rn(n≥1)光滑边界上齐次Neumann边界条件下的趋化性模型ut=Δ(φ(v)u)+ru−μul,x∈Ω,t>0,vt=Δv−vw,x∈Ω,t>0,wt= - Δ w+u,x∈Ω,t>0,其中参数Δ, μ>0, r∈r, l>1。正运动函数满足φ∈C3([0,∞)),本文的目的是弱化保证全局有界解存在的对l的限制Li et al.(2022)。证明了当n≤3时,存在所有l>;1的全局有界经典解。当n≥4时,我们得到了系统对所有l>;2都存在一个整体有界经典解,且当l=2时,足够大的μ可以保证系统存在整体有界经典解。此外,我们还研究了解的大时间行为。
Logistic damping effect in a chemotaxis system with density-suppressed motility and indirect signal consumption
In this paper, we study the following chemotaxis model under homogeneous Neumann boundary conditions in a bounded domain with smooth boundary, where the parameters , , and . The positive motility function satisfies , and the purpose of this paper is to weaken the restriction on which ensures the existence of global bounded solutions Li et al. (2022). It was shown that when , there exists a global bounded classical solution for all . When , then we concluded that the system admits a global bounded classical solution for all , and that the sufficiently large can ensure the existence of global bounded solutions if . Moreover, we also studied the large time behavior of solutions.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.