有限通量Keller-Segel体系的自相似解

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Shohei Kohatsu , Takasi Senba
{"title":"有限通量Keller-Segel体系的自相似解","authors":"Shohei Kohatsu ,&nbsp;Takasi Senba","doi":"10.1016/j.nonrwa.2024.104308","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a flux-limited Keller–Segel system, and construct radial forward self-similar solutions in the critical and super-critical cases, which imply that the system admits global solutions with some rough initial data. We also show existence of radial stationary solutions, and obtain some properties. In order to prove our theorems, we deal with second-order ordinary differential equations of corresponding mass functions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104308"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-similar solutions to a flux-limited Keller–Segel system\",\"authors\":\"Shohei Kohatsu ,&nbsp;Takasi Senba\",\"doi\":\"10.1016/j.nonrwa.2024.104308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a flux-limited Keller–Segel system, and construct radial forward self-similar solutions in the critical and super-critical cases, which imply that the system admits global solutions with some rough initial data. We also show existence of radial stationary solutions, and obtain some properties. In order to prove our theorems, we deal with second-order ordinary differential equations of corresponding mass functions.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"84 \",\"pages\":\"Article 104308\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824002475\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002475","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个有限通量的Keller-Segel系统,在临界和超临界情况下构造了径向正演自相似解,这意味着系统允许具有一些粗糙初始数据的全局解。我们还证明了径向平稳解的存在性,并得到了一些性质。为了证明我们的定理,我们处理了相应质量函数的二阶常微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-similar solutions to a flux-limited Keller–Segel system
We consider a flux-limited Keller–Segel system, and construct radial forward self-similar solutions in the critical and super-critical cases, which imply that the system admits global solutions with some rough initial data. We also show existence of radial stationary solutions, and obtain some properties. In order to prove our theorems, we deal with second-order ordinary differential equations of corresponding mass functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信