{"title":"Surface tuning of a highly crystalline Ni/LaAlO3 perovskite catalyst obtained from aluminum saline slags using various synthesis methods for the dry reforming of methane","authors":"H.J. Muñoz, S.A. Korili, A. Gil","doi":"10.1016/j.cattod.2024.115158","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents the first synthesis of nickel-modified lanthanum aluminate (Ni/LaAlO<sub>3</sub>) perovskite from aluminum (Al) saline slag waste involving acid extraction. Two methods were employed to extract Al: a 2 M HCl aqueous solution (AH) and various citric acid (CA) aqueous solutions (0.5, 1.0, or 2.0 M). Three preparation methods (Pechini, modified citrate, and metal–organic gel) were evaluated to obtain the pure lanthanum aluminate (LaAlO<sub>3</sub>) phase. This study also investigated the effects of several factors, with some variations being observed depending on the methodology used. The factors analyzed were: <em>(i)</em> preparation method; <em>(ii)</em> type of Al precursor solution (either extracted using HCl or CA); <em>(iii)</em> ligand/cations molar ratio (La<sup>3 +</sup> + Al<sup>3+</sup>), ranging from 0.3 to 3.0; <em>(iv)</em> CA concentration; <em>(v)</em> molar ratio (La/Al), between 0.5 and 1.0; <em>(vi)</em> calcination temperature; and <em>(vii)</em> acid etching of the final materials with aqueous dilute nitric acid (HNO<sub>3</sub>). The results indicated that it is possible to obtain LaAlO<sub>3</sub> perovskite using all three methodologies and the Al extracted from saline slags. For the Pechini and metal–organic gel methods, ligand/cations molar ratios (La<sup>3+</sup> + Al<sup>3+</sup>) of 3.0 and between 0.3 (with CA) and 1.5 (with AH), respectively, were obtained, while a CA concentration of 1.0 M was used for the modified citrate method. The optimal molar ratio (La/Al) for obtaining the perovskite was 1.0 in all three methods. The perovskite was synthesized at low temperatures, starting from 650 °C, and was obtained in a completely pure form at between 950 and 1050 °C. Treatment with aqueous dilute acid had a marked effect, especially on the materials obtained when using the initial solution extracted with 2.0 M HCl. This treatment was particularly beneficial for the material prepared using the Pechini method, which induced a 2.5-fold increase in the specific surface area and total pore volume without affecting the crystalline structure, and allowed the specificity of the nickel (Ni) active sites incorporated to be directed, particularly towards a higher proportion of <em>β</em><sub><em>1</em></sub> reducible species. This result improved the catalytic performance in the dry reforming of methane (DRM) reaction, achieving conversions of up to 73 % in CO<sub>2</sub> and up to 70 % in CH<sub>4</sub>, with average selectivity of 0.93 after 20 h of reaction. These outcomes even surpassed the reference catalyst, which was entirely prepared using commercial-grade reagents. Factors such as the presence of other metals in the slag and the versatility of cationic substitution contributed to enhancing the physicochemical properties of the catalysts. Ultimately, all of this led to suppression of the formation of double-walled filamentous carbon deposits, which tend to deactivate the catalyst due to sintering and deformation of the active phase.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"447 ","pages":"Article 115158"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124006527","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Surface tuning of a highly crystalline Ni/LaAlO3 perovskite catalyst obtained from aluminum saline slags using various synthesis methods for the dry reforming of methane
This research presents the first synthesis of nickel-modified lanthanum aluminate (Ni/LaAlO3) perovskite from aluminum (Al) saline slag waste involving acid extraction. Two methods were employed to extract Al: a 2 M HCl aqueous solution (AH) and various citric acid (CA) aqueous solutions (0.5, 1.0, or 2.0 M). Three preparation methods (Pechini, modified citrate, and metal–organic gel) were evaluated to obtain the pure lanthanum aluminate (LaAlO3) phase. This study also investigated the effects of several factors, with some variations being observed depending on the methodology used. The factors analyzed were: (i) preparation method; (ii) type of Al precursor solution (either extracted using HCl or CA); (iii) ligand/cations molar ratio (La3 + + Al3+), ranging from 0.3 to 3.0; (iv) CA concentration; (v) molar ratio (La/Al), between 0.5 and 1.0; (vi) calcination temperature; and (vii) acid etching of the final materials with aqueous dilute nitric acid (HNO3). The results indicated that it is possible to obtain LaAlO3 perovskite using all three methodologies and the Al extracted from saline slags. For the Pechini and metal–organic gel methods, ligand/cations molar ratios (La3+ + Al3+) of 3.0 and between 0.3 (with CA) and 1.5 (with AH), respectively, were obtained, while a CA concentration of 1.0 M was used for the modified citrate method. The optimal molar ratio (La/Al) for obtaining the perovskite was 1.0 in all three methods. The perovskite was synthesized at low temperatures, starting from 650 °C, and was obtained in a completely pure form at between 950 and 1050 °C. Treatment with aqueous dilute acid had a marked effect, especially on the materials obtained when using the initial solution extracted with 2.0 M HCl. This treatment was particularly beneficial for the material prepared using the Pechini method, which induced a 2.5-fold increase in the specific surface area and total pore volume without affecting the crystalline structure, and allowed the specificity of the nickel (Ni) active sites incorporated to be directed, particularly towards a higher proportion of β1 reducible species. This result improved the catalytic performance in the dry reforming of methane (DRM) reaction, achieving conversions of up to 73 % in CO2 and up to 70 % in CH4, with average selectivity of 0.93 after 20 h of reaction. These outcomes even surpassed the reference catalyst, which was entirely prepared using commercial-grade reagents. Factors such as the presence of other metals in the slag and the versatility of cationic substitution contributed to enhancing the physicochemical properties of the catalysts. Ultimately, all of this led to suppression of the formation of double-walled filamentous carbon deposits, which tend to deactivate the catalyst due to sintering and deformation of the active phase.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.