谷歌趋势数据在社会科学中的(错误)使用——系统的回顾、批评和建议

IF 3.2 2区 社会学 Q1 SOCIOLOGY
Johanna Hölzl, Florian Keusch, Christoph Sajons
{"title":"谷歌趋势数据在社会科学中的(错误)使用——系统的回顾、批评和建议","authors":"Johanna Hölzl,&nbsp;Florian Keusch,&nbsp;Christoph Sajons","doi":"10.1016/j.ssresearch.2024.103099","DOIUrl":null,"url":null,"abstract":"<div><div>Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data.</div></div>","PeriodicalId":48338,"journal":{"name":"Social Science Research","volume":"126 ","pages":"Article 103099"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations\",\"authors\":\"Johanna Hölzl,&nbsp;Florian Keusch,&nbsp;Christoph Sajons\",\"doi\":\"10.1016/j.ssresearch.2024.103099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data.</div></div>\",\"PeriodicalId\":48338,\"journal\":{\"name\":\"Social Science Research\",\"volume\":\"126 \",\"pages\":\"Article 103099\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Science Research\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0049089X24001212\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Research","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0049089X24001212","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究人员越来越多地使用来自谷歌Trends的聚合搜索数据来研究广泛的现象。尽管这种新的数据源具有一些重要的实用和方法上的优点,但它在内部有效性、可靠性和可泛化性方面也带来了实质性的挑战。在本文中,我们描述和评估了谷歌趋势数据在社会科学领域的现有应用研究。我们使用谷歌Trends数据对360项研究进行了系统的文献综述,以:(1)说明习惯和趋势;(2)检查研究人员是否以及如何考虑已确定的挑战。结果表明,绝大多数文献未能检验其谷歌趋势测量的内部有效性,没有考虑其数据是否跨样本可靠,也没有讨论其结果的可泛化性。最后,我们提出了一些实用的建议,这些建议将帮助研究人员解决这些问题,并正确地使用谷歌趋势数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations
Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
4.00%
发文量
0
审稿时长
65 days
期刊介绍: Social Science Research publishes papers devoted to quantitative social science research and methodology. The journal features articles that illustrate the use of quantitative methods in the empirical solution of substantive problems, and emphasizes those concerned with issues or methods that cut across traditional disciplinary lines. Special attention is given to methods that have been used by only one particular social science discipline, but that may have application to a broader range of areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信