{"title":"一类具有空间依赖逻辑源和非线性生产的拟线性趋化系统的有界性和有限时间爆破","authors":"Neng Zhu , Wanwan Wang","doi":"10.1016/j.nonrwa.2024.104309","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the following quasilinear chemotaxis system with space dependent logistic source and nonlinear production <span><span><span>(<span><math><mo>⋆</mo></math></span>)</span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><mi>φ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mfenced><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi></mrow></mfenced><mo>+</mo><mi>λ</mi><mrow><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></mrow><mi>u</mi><mo>−</mo><mi>κ</mi><mrow><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi></mtd><mtd><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>μ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>μ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>|</mo></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mtd><mtd><mi>x</mi></mtd><mtd><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with homogeneous Neumann boundary conditions, where <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>=</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>R</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>θ</mi><mo>></mo><mn>1</mn></mrow></math></span>. Here <span><math><mi>λ</mi></math></span> and <span><math><mi>κ</mi></math></span> are continuous positive functions, <span><math><mrow><mo>−</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mi>κ</mi></math></span> has a positive lower bound, the nonlinear diffusivity <span><math><mrow><mi>φ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, chemosensitivity <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and signal production <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> are supposed to extend the prototypes <span><span><span><math><mrow><mi>φ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>p</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mi>ψ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>with <span><math><mrow><mi>p</mi><mo>∈</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>,</mo><mi>l</mi><mo>></mo><mn>0</mn></mrow></math></span>. Under some suitable assumptions on <span><math><mrow><mi>φ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, we show that there exist the global boundedness and finite-time blow-up of solutions for the problem (<span><math><mo>⋆</mo></math></span>).</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104309"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness and finite-time blow-up in a quasilinear chemotaxis system with space dependent logistic source and nonlinear production\",\"authors\":\"Neng Zhu , Wanwan Wang\",\"doi\":\"10.1016/j.nonrwa.2024.104309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the following quasilinear chemotaxis system with space dependent logistic source and nonlinear production <span><span><span>(<span><math><mo>⋆</mo></math></span>)</span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><mi>φ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mfenced><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi></mrow></mfenced><mo>+</mo><mi>λ</mi><mrow><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></mrow><mi>u</mi><mo>−</mo><mi>κ</mi><mrow><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi></mtd><mtd><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>μ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>μ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>|</mo></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mtd><mtd><mi>x</mi></mtd><mtd><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with homogeneous Neumann boundary conditions, where <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>=</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>R</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>θ</mi><mo>></mo><mn>1</mn></mrow></math></span>. Here <span><math><mi>λ</mi></math></span> and <span><math><mi>κ</mi></math></span> are continuous positive functions, <span><math><mrow><mo>−</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>κ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mi>κ</mi></math></span> has a positive lower bound, the nonlinear diffusivity <span><math><mrow><mi>φ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, chemosensitivity <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and signal production <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> are supposed to extend the prototypes <span><span><span><math><mrow><mi>φ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>p</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mi>ψ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>with <span><math><mrow><mi>p</mi><mo>∈</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>,</mo><mi>l</mi><mo>></mo><mn>0</mn></mrow></math></span>. Under some suitable assumptions on <span><math><mrow><mi>φ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, we show that there exist the global boundedness and finite-time blow-up of solutions for the problem (<span><math><mo>⋆</mo></math></span>).</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"84 \",\"pages\":\"Article 104309\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824002487\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002487","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文关注以下具有空间相关逻辑源和非线性产生的拟线性趋化系统(- ut)ut=∇⋅φ(u)∇u−χ∇⋅ψ(u)∇v+λ(|x|)u−κ(|x|)uθ,x∈BR,t>0,0=Δv - μ(t)+f(t),μ(t)=1|BR|∫BRf(u(x,t))dx,x∈BR,t>0,具有齐次诺依mann边界条件,其中BR=BR(0)∧Rn with n的小于1,R>;0和θ>;1。其中λ和κ是连续的正函数,−λ′,κ′>0,κ有一个正的下界,假设非线性扩散系数φ(u),化学敏感性ψ(u)和信号产生f(u)扩展了原型φ(u)=(u+1)−p,ψ(u)=u(u+1)q−1,f(u)=ul,其中p∈R, q,l>0。在φ(u), ψ(u)和f(u)的适当假设下,我们证明了问题(-)的解存在全局有界性和有限时间爆破性。
Boundedness and finite-time blow-up in a quasilinear chemotaxis system with space dependent logistic source and nonlinear production
This paper is concerned with the following quasilinear chemotaxis system with space dependent logistic source and nonlinear production ()with homogeneous Neumann boundary conditions, where with , and . Here and are continuous positive functions, and has a positive lower bound, the nonlinear diffusivity , chemosensitivity and signal production are supposed to extend the prototypes with and . Under some suitable assumptions on , and , we show that there exist the global boundedness and finite-time blow-up of solutions for the problem ().
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.